miércoles, 28 de marzo de 2018

Francis Crick en la historia de la Biología


El texto de esta entrada corresponde a la conferencia que pronuncié en la Facultade de Bioloxía con motivo de la festividad de san Alberto Magno, patrono de las facultades de Bioloxía, Física, Matemáticas, Química y Ciencias, el día 15 de noviembre de 2004.


A veces nos llegan noticias completamente intrascendentes. En otras ocasiones, las novedades vienen llenas de un cierto contenido. Pero hay veces en que son tan rotundas, que nos obligan a analizar muchas cosas a la luz de la nueva situación generada por el acontecimiento que acabamos de conocer.

Cuando este verano pasado conocí la muerte de Francis Crick, se me acumularon en la mente una gran cantidad de datos, de detalles y de perspectivas históricas que me obligaron a reflexionar sobre su actuación dentro de la biología. Un papel que va más allá de lo realizado por él y que nos obliga a contemplarlo desde la óptica de lo que representa a partir de sus descubrimientos, reflexiones y planteamientos.

    Más tarde, y ya comenzado el curso, el Sr. Decano de la Facultad me encomendó impartir la conferencia correspondiente al Acto Académico con que conmemoramos la festividad de S. Alberto Magno. Los dos pensamos en la posibilidad de presentar una semblanza personal sobre esta figura de la biología del siglo XX. Desde aquí quiero agradecerle la posibilidad que me brindó de presentar ante ustedes estas reflexiones mías.

 El pasado día 28 de julio nos enterábamos de la muerte de Francis Crick. Tenía 88 años. La noticia no dejó indiferentes a las múltiples personas que, de un modo u otro, conocen su actividad científica ejercida a lo largo de una vida fecunda en trabajos y logros. También yo reflexioné sobre su figura y su legado. Me gustó pensar en cómo, pasado el tiempo, se enjuiciará su trayectoria desde una óptica histórica, enlazando la figura de Crick con la de los grandes de la biología, como pudieron ser Pasteur, Mendel, Darwin o Cajal, por citar unos pocos. Todos ellos contribuyeron y consolidaron nuestros conocimientos acerca de nosotros mismos. Crick también lo hizo y por eso su nombre irá ligado a esa estela de sabios que, desde antiguo, vienen planteándose preguntas sobre nuestra naturaleza y buscando las respuestas apropiadas.

Permítanme reflexionar ahora en voz alta acerca de este hombre que contribuyó de modo determinante a nuestro conocimiento, respondió a dudas que venían planteadas desde el tiempo de los filósofos jónicos y planteó nuevas preguntas que están en los límites de nuestros conocimientos acerca de la naturaleza de la vida.
+ + +

Desde la época más antigua, el ser humano ha formulado preguntas sobre el origen del mundo, sobre la propia naturaleza y, a veces, sobre la propia finalidad. En tiempos pretéritos las respuestas llegaron bajo la forma de mito. Más allá de este estado, los sistemas explicativos se organizaron según dos tendencias divergentes.

Una de estas tendencias dio origen a las religiones, todas ellas consistentes en un conjunto de dogmas basados en algún modo de revelación. Así, el mundo occidental hasta el fin de la Edad Media estuvo dominado por una confianza implícita en los escritos de la Biblia y, por tanto, por una creencia general en lo sobrenatural.

El otro modo de tratar los misterios del mundo fue, y sigue siendo, por medio de la filosofía y más tarde de la ciencia, si bien en el principio de su historia la ciencia no estuvo totalmente separada de la religión. La ciencia se dirige a los misterios con sus preguntas, dudas, curiosidad, etc., esforzándose en encontrar explicaciones, actitud muy diferente de aquella otra en la que se basan las religiones. Los filósofos presocráticos (jónicos) fueron los primeros en transitar estas vías en su búsqueda de explicaciones “naturales”, es decir, explicaciones basadas en las formas observables de la naturaleza tales como el fuego, el agua o el aire. Esta tentativa de los jónicos para comprender las causas de los fenómenos naturales representa el principio de la ciencia.

Una diferencia fundamental entre ciencia y religión es que, en general, la religión consiste en un conjunto de dogmas revelados a los que no hay alternativa ninguna ni posible desviación por pequeña que sea. En ciencia, por el contrario, se insiste en la formulación de respuestas alternativas y en la paulatina substitución de unas teorías por otras. En general, la bondad de una idea científica sólo se puede evaluar por completo en función de su eficacia explicativa e, incluso, predictiva. Han sido pocos los científicos que han dicho esto, que a veces es considerado como la esencia de la ciencia. En tiempos del empirismo y del induccionismo, se dijo que la función de la ciencia era acumular conocimiento. Muchas veces se perdió de vista lo que es el verdadero objeto de la ciencia: una comprensión cada vez mayor de nuestra propia naturaleza y del mundo en que vivimos.

La ciencia tiene numerosos objetivos. En 1968, Ayala los describe así:
- busca organizar los conocimientos de modo sistemático, esforzándose por descubrir las relaciones entre fenómenos y procesos.
- se esfuerza por ofrecer explicaciones a las condiciones en que ocurren ciertos sucesos.
- propone hipótesis explicativas que pueden ser probadas y, por tanto, rechazadas.

Más en general, la ciencia intenta encontrar un pequeño número de principios explicativos con los que interpretar la inmensa diversidad de los fenómenos y procesos que ocurren en la naturaleza.

En las ciencias biológicas, la mayoría de los grandes progresos se hicieron a partir de la aparición de conceptos nuevos o de la mejora y redefinición de los preexistentes. No están muy equivocados quienes afirman que el progreso de la ciencia consiste principalmente en el progreso de los conocimientos científicos.

En este plan, una de las grandes preguntas que siempre se planteó el hombre es aquella que se refiere a la herencia biológica y a la diversidad.

En la época jónica Platón había hablado de las esencias, inmutables en el tiempo, y esto, que aplicado al campo conceptual de otras ciencias como pueden ser la física o la química puede ser muy explicativo y operativo, fue un auténtico desastre cuando se aplicó a la biología. Platón tuvo una influencia muy negativa en diversos campos biológicos. 

Fueron necesarios mas de dos mil años para que la biología, gracias a Darwin en gran medida, escapase del efecto paralizante del esencialismo. El pensamiento platónico sobre los seres, abrigados en las esencias, no fue operativo a la hora de enjuiciar la variabilidad de los seres naturales y muchas veces constituyó más bien un freno ideológico cuando se hizo necesario enjuiciar la naturaleza de esa misma variabilidad. Pero toda la importancia que le concedió al gran arquitecto cósmico, permitió vincular su filosofía con el dogma cristiano, que dominó el pensamiento occidental hasta el siglo XVII. La emergencia de las modernas teorías biológicas sólo fue posible, en gran parte, después de que la ciencia se emancipase de las ideas platónicas.

Aristóteles es un pensador muy diferente. Antes que Darwin, nadie como Aristóteles contribuyó tanto a nuestra comprensión del mundo. Sus conocimientos biológicos eran inmensos y procedían de anteriores fuentes diversas. Podemos decir que cada capítulo de la biología clásica tiene sus comienzos en la obra de Aristóteles. Fue el primero en distinguir diferentes ramas en la biología y en dedicarles tratamiento monográfico separado. Fue el primero en descubrir el gran valor explicativo de la comparación y es reconocido, justamente, como el fundador del método comparativo. Fue el primero en establecer detalladamente la historia natural de un gran número de especies animales. Consagró una obra entera a la biología de la reproducción. Se interesó por la diversidad orgánica así como por el significado de las diferencias entre los reinos animal y vegetal. Incluso sin proponer una sistemática formal, realizó una clasificación de los animales según ciertos criterios, y su clasificación de los invertebrados fue superior a la que, dos mil años mas tarde, haría Linneo. En fisiología no tuvo tanta notabilidad debido a que se inspiró en doctrinas anteriores. Fue un empirista y sus especulaciones siempre estuvieron precedidas por observaciones pertinentes. En una obra suya dice taxativamente que la información que nos llega por los sentidos debe ser más valorada que la que nos indica la razón. En ese aspecto andaba a años luz por delante de los que, entre los escolásticos, más tarde serían llamados aristotélicos, y que no analizaban los problemas más que por las vías de la razón.

Lo más notable en él es que siempre anduvo a la búsqueda de las causas y sus preguntas más importantes no fueron tanto buscar el “¿cómo?”: ¿Cómo es tal estructura? ¿Cómo funciona tal mecanismo, sino el “¿por qué?” ¿Por qué un organismo crece desde la forma de huevo fecundado hasta la de adulto? ¿Por qué la naturaleza está llena de procesos finales? Vio claramente que la materia inorgánica está desprovista de capacidad para desarrollar las formas complejas de los organismos, en este plan,(hoy diríamos que  no creía )en la generación espontánea. Según él, en la materia viva debía haber algo más, y para nominarla empleó la palabra eidos, que venía a ser un principio intrínseco de los seres y que tendría unas funciones exactamente similares a las que, en biología moderna, se atribuye al genotipo cuando se considera como un programa genético de desarrollo. Decía que todas las substancias naturales intervienen de acuerdo con sus propiedades intrínsecas y que todos los fenómenos de la naturaleza son procesos o intervienen en procesos y, puesto que todos ellos tienen un fin último, consideraba que el estudio de esos fines también contribuye de modo esencial al estudio de la naturaleza. Para Aristóteles todas las estructuras y las actividades biológicas tenían su significación en términos biológicos o, como diríamos con términos actuales, un significado adaptativo. Posiblemente éste fue el mayor éxito de Aristóteles, haber comprendido esto. Las preguntas tipo “¿por qué?” que formuló Aristóteles jugaron un papel muy importante en la biología de los siglos posteriores y en la misma historia de esta ciencia.

Sólo en estos últimos años, los trabajos de Aristóteles han sido valorados en su justa medida. En épocas pasadas no disfrutó de ese merecido reconocimiento debido a muchas razones. Una de ellas fue que los tomistas hicieron de él la suprema autoridad filosófica y al caer la escolástica arrastró con ella a Aristóteles. Por otra parte, el renacimiento científico se realizó fundamentalmente en el campo de las ciencias físicas y químicas, áreas que encajaban bien dentro de la filosofía platónica y para las cuales la filosofía aristotélica no ofrecía marcos adecuados. Esto fue advertido por Bacon, Descartes y otros, que no dejaron de menospreciar las doctrinas aristotélicas.

Conforme la biología se fue apartando de la física, se le fue concediendo mayor importancia a Aristóteles. Cuando en nuestra época se comprendió que los seres vivos tienen una doble naturaleza, la actual y otra que es la consecuente de una historia evolutiva, se comprendió también que el “plan” que dirige su desarrollo y sus actividades -es decir, su programa genético- representa el eidos, el ”principio formativo” que ya había formulado Aristóteles. Ya no hacía falta mucho para que todos los biólogos comprendiesen que convenía algo más que un soplo vital para que un huevo de rana produjese una rana y una bellota diese lugar a una encina. Solamente era preciso reconocer que los sistemas biológicos complejos son el producto de programas genéticos con una historia evolutiva de mas de tres mil millones de años.

    Pero para que eso ocurriese, sería preciso llegar a las épocas actuales, pues cuando el Cristianismo conquistó Occidente, la teología cristiana llenó el conocimiento con su interpretación del mundo. La teología cristiana estaba dominada por la idea de la creación. Según la Biblia, el mundo había sido creado hacía poco, no cambiaba y toda su comprensión estaba contenida en la “palabra revelada”. El dogma impidió considerar cualquier cuestión relativa al porqué de las cosas o esbozar la más pequeña idea evolutiva. Y puesto que el mundo había sido creado por Dios, era, tal como siglos mas tarde diría Leibniz, “el mejor de todos los mundos posibles”. Cualquier cambio evolutivo, por tanto, sería para peor.

El suceso que, acontecido en el seno de la cristiandad, afectó mas a la historia de la biología fue el desarrollo de una visión del mundo conocida como “teología natural”. En los escritos de los Padres de la Iglesia, la naturaleza aparecía como si fuese un libro, el análogo natural del libro revelado, la Biblia. Hacer equivalentes los dos libros sugería que el estudio del libro de la naturaleza, la creación realizada por Dios, autorizaba el desarrollo de una teología natural, pareja a la teología revelada surgida del estudio de la Biblia.

Este concepto de la teología natural no era un concepto nuevo. La armonía del mundo y la aparente perfección de las adaptaciones manifestadas por los animales y las plantas, ya había sido señalada por muchos autores bastante antes de la aparición del cristianismo. Ya en el antiguo reino de Egipto, en Menfis, dos mil años antes de la civilización griega, había sido postulado que una inteligencia superior creadora había organizado los fenómenos de la naturaleza. Posturas tan claramente teológicas pueden ser encontradas también en Jenofonte o en Herodoto. Platón pensaba que el mundo había sido creado por un artesano bueno, inteligente y racional. Galeno defendió la idea de un mundo querido, la obra de un creador bueno y todopoderoso. Pero el autor más influyente para el desarrollo de la teología natural fue santo Tomás de Aquino. Su obra dominó el pensamiento científico europeo y en su Summa Theologica, el quinto argumento para probar la existencia de Dios está basado en el orden y la armonía del mundo, que requieren que un ser inteligente y trascendente dirija todo hacia una finalidad.

Pero seguían pendientes, aún sin resolver, las preguntas planteadas por Aristóteles acerca del eidos, el principio formativo de todos y cada uno de los seres vivos. La diversidad de los seres vivos según las diferentes áreas geográficas, puesta de manifiesto por los viajes de exploradores y estudiosos, era una cuestión intrigante que contrastaba con los valores de las constantes físico-químicas en todo el globo terrestre. La especie como entidad biológica seguía siendo algo inexplicable. La vida era considerada como una actividad que se podía crear bajo ciertas condiciones y, por tanto, se creía en la generación espontánea.

Fue preciso llegar a un mundo de madurez de ideas para que esas cuestiones volviesen a ser planteadas con cierta precisión. Después del siglo XVIII, y los trabajos de los grandes estudiosos de la naturaleza, como es el caso de Bufón y su Historia Natural, donde ya apunta la posibilidad del origen de las especies a través de procesos evolutivos, el siglo XIX se va a caracterizar por el rigor en los planteamientos y la emergencia de una serie de conocimientos que son aplicables a todos los seres vivos. Comienza la existencia de la biología como hoy la conocemos. Las preguntas de siempre, las que han acompañado al hombre desde Aristóteles y han servido de estímulo a la mayoría de los estudios de fondo, comienzan a ser respondidas, se asientan los fundamentos de lo que empieza a ser una biología moderna, cada vez más y más alejada de los antiguos mitos explicativos.

Del Siglo XIX es la teoría celular, la comprensión de los procesos hereditarios y los de división celular, el conocimiento de los principios inmediatos, la síntesis de la urea y, por tanto, el comienzo de la desaparición del vitalismo como supuesta doctrina, el destierro de las ideas acerca de la generación espontánea, el aforismo onmis vivo ex vivo (la vida no se crea, simplemente se transmite), la idea de la evolución causada por selección natural y, en suma, la misma palabra biología. También es en este siglo cuando los científicos dejan de hablar de Dios en sus escritos, de modo que ya no es posible deducir, a través de ellos, el credo de sus autores.

El nacimiento de la biología molecular coincidió con el momento en que los científicos relacionaron enzimas con genes y se comenzaron e estudiar los procesos biológicos bajo este punto de vista. Esto ya no era química orgánica, ni bioquímica. Era la implicación de las moléculas en los procesos biológicos y apareció el concepto de biología molecular, muchos de cuyos logros ha sido elucidar la estructura tridimensional de las moléculas y, a partir de ellas, comprender sus funciones.

Es en esta época cuando renace el interés acerca del material hereditario y al imaginar que el mensaje genético debe estar encerrado en diferentes secuencias moleculares, se piensa que sean las proteínas las encargadas de esta función, puesto que al ser polímeros de 20 diferentes monómeros, las posibles combinaciones diferentes llegan a ser casi incalculables. No obstante, los trabajos de Avery y colaboradores con Pneumococcus, abren la puerta a la investigación en la dirección correcta, y son los experimentos de Hershey y Chase los que determinan de modo concluyente que son los ácidos nucleicos los encargados de transportar la información genética a lo largo de las generaciones.

A este momento le siguió uno, intenso, de estudios acerca del ADN y de su presencia en la célula. En consecuencia se ganó en conocimiento acerca de su naturaleza y de su comportamiento. Algunas de las deducciones a las que se llegó no dejaron de ser proféticas: La inercia metabólica del ADN parecía confirmar una especulación común entre los teóricos del gen, según la cual el gen funcionaría como “matriz”: “La implicación lógica es que el gen no necesita hacer nada (en el metabolismo de la célula) sino que simplemente aporta un plan de realización de las síntesis” (Mazia, 1952). La cantidad absolutamente constante de ADN por núcleo diploide de cada especie, estaba perfectamente de acuerdo con este postulado.

El ambiente intelectual era el apropiado, las ideas estaban perfectamente perfiladas, las técnicas a punto y la pregunta adecuada, siempre estímulo de la investigación, formulada: ¿cómo es la estructura de los ácidos nucleicos? Porque únicamente conociendo la estructura del ADN se podría comprender cómo era capaz de llevar a cabo su función.
A principios de los años 50 del pasado siglo, varios laboratorios se pusieron a trabajar para resolver la duda y dos de ellos fueron los de Linus Pauling, en Pasadena, que estudiaba estructuras moleculares y el de Maurice Wilkins, de Londres, que era especialista en rayos X. Perteneciente a este equipo, Rosalind Franklin tuvo el éxito de conseguir excelentes fotografías de la difracción de estos rayos causada por el ADN. En función de estas fotografías se plantearon muchas preguntas acerca de la estructura del ADN, cuando un tercer grupo comenzó a trabajar, en Cambridge, con el mismo tema: era el formado por Francis Crick y James Watson.

No es cuestión de comentar la historia del descubrimiento, pero sí es importante señalar que fueron estos dos últimos quienes se dieron cuenta de la importancia biológica del ADN y eso fue lo que les permitió aclarar este problema a pesar de sus no muy amplios conocimientos de biología. Wilkins, por ejemplo, en esos mismos años se preguntaba “qué podían hacer los ácidos nucleicos en las células”.

Mientras, tanto Crick como Watson hablaron con biólogos, visitaron centros de investigación, se ayudaron de modelos de los diferentes componentes de los ácidos nucleicos y, entre febrero y marzo de 1953, llegaron a una solución satisfactoria a aquella pregunta que se venía formulando la ciencia desde Aristóteles. ¿Cómo es el material hereditario?

De pronto se comprendió mucho de aquello que hasta entonces había constituido un misterio. Allí estaba, encerrada en una sencilla estructura molecular, la clave de la historia evolutiva de los seres vivos.

Se dijo, y se sigue diciendo, de la molécula de ADN que era elegante ¿qué entendemos por elegante en este caso? A veces es preciso detenerse en el significado que pueda tener un adjetivo porque nos puede aclarar más de un concepto. Al ver la estructura molecular de otros compuestos y evocar sus propiedades bioquímicas, muchas veces no nos resulta posible deducir éstas a partir de aquella. Todo queda como encerrado en un misterio funcional cuyo desciframiento será base de futuros estudios. No conozco una estructura molecular tan transparente como la del ácido nucleico. Al verla es sencillo intuir su funcionamiento, pues todo en ella tiene una finalidad que nos es posible comprender. No encontramos nada que nos parezca superfluo y todo cuanto sabemos acerca del ácido nucleico lo podemos comprender viendo su estructura. Todo está allí para quien quiera interpretarlo. Para mí, ahí es donde radica el calificativo de elegante cuando se aplica a esta estructura molecular, su transparencia.

El descubrimiento de la doble hélice del ADN y de su código representó un paso científico de primera magnitud. Simultáneamente clarificó algunas de las zonas más oscuras de la biología y permitió formular preguntas bien definidas: algunas de ellas representan hoy en día las mismas fronteras de la biología. Demostró hasta qué punto los organismos son fundamentalmente diferentes a cualquier otro tipo de material inerte. No hay nada en el mundo inanimado que esté dotado de un programa genético que sea capaz de almacenar la información a lo largo de una historia que, globalmente y para el mundo vivo, se remonta a tres mil millones de años. Al mismo tiempo esta explicación puramente mecanicista explica fenómenos que los vitalistas decían no poder clarificar física o químicamente.

    Pero fijémonos en la figura de Francis Crick, pues me gustaría reflexionar sobre su papel en la historia del pensamiento biológico. Procedente del campo de la física, se dedicó a desentrañar lo que él llamó “el secreto de la vida”, la naturaleza del ADN. Perteneciente a una familia de artesanos y amantes de la naturaleza, (su abuelo se había carteado con Darwin y publicado un pequeño artículo con él), estudió en el University College London. Después de la segunda guerra mundial, se preocupó por temas biológicos y a ellos se dedicó desde entonces hasta su muerte, acaecida en julio del presente año.

Posiblemente ha sido el biólogo y el pensador de la biología más influyente del siglo XX. Tal vez, como antes decía refiriéndome a Aristóteles, que todos los campos de la biología comenzaban en él, algún día se llegue a decir que todos los campos de la biología molecular comienzan en Crick. Es asombroso cómo llegó a intuir el comportamiento del ADN y su biología, para, desde ese planteamiento, poder predecir correctamente su funcionamiento y su comportamiento. Jacques Monod escribió “Nadie descubrió o creó la biología molecular. Pero un hombre domina intelectualmente la totalidad de su campo, debido a que conoce y comprende lo más importante de su contenido, ese hombre es Francis Crik”. Para muchos, junto con Darwin y Mendel, forma un trío de sabios que han sido capaces de establecer el conocimiento de la perpetuación, y diversificación, de los seres vivos.

Describiendo la estructura del ADN, encontró la base molecular de la identidad estructural de todos los seres vivos, aquella identidad que había sido buscada desde el Renacimiento y prevista e insinuada por Darwin con un enfoque más científico y menos romántico.

Definió lo que ha sido llamado Dogma Central de la Biología Molecular, que nos indica que la información biológica sigue un camino que va desde el ADN hasta las proteínas, pasando por el ARN como intermediario. Si bien existe un posible, y restringido, retorno desde el ARN al ADN, no se conoce ningún mecanismo molecular que haga un viaje inverso que, teniendo como origen la proteína, sea capaz de incidir en el ADN. De este modo sencillo, sin mayores complicaciones, desbarata definitivamente la antigua creencia sobre la herencia de los caracteres adquiridos, pues molecularmente, dice, no hay ningún camino conocido, ningún proceso bioquímico, que nos pueda explicar su base estructural.

Francis Crick se embebió de la estructura del ADN e intelectualmente se metió en ella; aplicó sus conocimientos para estudiarla, conocerla e interpretarla y demostró, con atinadas predicciones acerca de su comportamiento, estar al tanto de muchos de los problemas fundamentales de la biología, muchos de los cuales sólo se podían explicar a partir de un profundo conocimiento de la estructura del ADN. Dedujo su replicación semiconservativa, ya insinuada en el último párrafo del trabajo en que se propone su modelo estructural.

Crick predijo la existencia de un código genético y mediante sencillos experimentos, demostró que la unidad de cifrado debía ser el triplete de nucleótidos. Predijo la existencia de moléculas de doble especificidad que sirvieran de adaptadores entre los tripletes del ácido nucleico y los aminoácidos. Y existían y hoy los conocemos como los ARN transferentes. Una vez descifrado el código, y descubierta su universalidad, fue Crick quien propuso la hipótesis del tambaleo para explicar de modo operativo la degeneración encontrada en él.

Basándose en esa degeneración, en la abundancia entre los seres vivos de los aminoácidos más degenerados y relacionando este dato con el hecho de que éstos son precisamente los aminoácidos que se pueden sintetizar de modo abiótico, propuso una teoría acerca de la evolución del código genético, la única teoría explicativa de que disponemos acerca de este proceso.

Como un modo de adentrarse en el funcionamiento del programa genético, estudió procesos de desarrollo y últimamente trabajaba en problemas acerca de la consciencia.

Su autoridad científica llega a ser tal, que cuando comenta la posibilidad de que la vida en nuestro planeta proceda de otro, la llamada teoría de la panspermia, nadie la ataca debido a venir amparada por el prestigio intelectual de quien la propone.

Crick fue más un teórico que un experimentador y defendió ardientemente que teorizar es una actividad necesaria en biología, no solo para sistematizar y explicar los fenómenos, sino también para estructurar bien las preguntas científicas que, actuando como motores del saber, deben ser planteadas y, posteriormente, respondidas. Una vez definidas correctamente esas preguntas, es cuando se puede comenzar a buscar las respuestas apropiadas. Amante de la abstracción, muchas veces encontró las respuestas concretas después de haberse abstraído con ellas durante un tiempo más o menos largo.

   Existe un tema que creo oportuno recordar ahora, o al menos indicar como punto de reflexión entre nosotros. Recuerdo haber oído comentar, cuando se les concedió el Premio Nobel a Watson y a Crick, que se había premiado un trabajo de investigación básica y que, de seguir por ese camino, pronto se premiarían trabajos carentes de utilidad. Pasados mas de cincuenta años del descubrimiento de la doble hélice, a nadie se le escapa lo fuera de lugar del comentario. Mucho del desarrollo de la biología molecular y de la biotecnología, se debe al conocimiento que poseemos de esa estructura. Lo que en aquel momento pudo haber parecido un estudio sin mayor trascendencia que el incremento del conocimiento, con el paso de los años ha pasado a ser la base de múltiples y sólidas aplicaciones en los más diversos campos del conocimiento. No es mi deseo polemizar sobre este tema aquí, en este momento, pero sí deseo recordar el calificativo de “investigación básica”, con un cierto tono peyorativo, que algunos aplicaron al trabajo realizado por estos dos investigadores.

   Ateo beligerante, y no deja de ser extraño que lo confesase en una época en que estas actitudes han pasado al campo de lo personal, deseaba sustituir las explicaciones religiosas acerca de la vida por explicaciones científicas. Hoy no es precisa la idea de un Dios todopoderoso para explicar el universo, ni para llegar a sus últimas causas o consecuencias. A veces parece que las vías de Santo Tomás servían para explicar lo inexplicable. Allá donde era incapaz de llegar la ciencia con sus explicaciones, la idea de un Dios llenaba el vacío conceptual que se generaba. Hoy no se necesita esa idea de Dios, pues casi todo dispone de explicación y sabemos que aquello que hoy carece de ella, un día u otro la tendrá. La idea de Dios no es precisa para explicar nada. Pero esto mismo no elimina su idea, pues si bien no es científicamente preciso creer en él, eso mismo hace que la fe en un ser supremo sea un acto de suprema libertad. Se cree porque se quiere creer, no porque se necesite.

Esa voluntariedad en la fe es también una contribución más de Francis Crick al mundo de las ideas, a nuestro mundo.

   Se ha dicho, tal vez con cierta insistencia, que Francis Crick no ha dirigido muchas tesis doctorales, no ha hecho un equipo investigador ni deja escuela, sino que más bien siempre le ha gustado trabajar con un solo colaborador. Algunos lo dicen, incluso, como lamentando una supuesta esterilidad de un trabajo que, en otras circunstancias, habría sido tremendamente fecundo. Yo miro a mi alrededor, a los biólogos moleculares, a quienes trabajan con los ácidos nucleicos, veo lo que piensan, cómo programan los estudios, cómo hacen investigación, cómo se interpretan y plantean los experimentos y veo que todos ellos están inspirados de uno u otro modo en los trabajos y conceptos de Crick. Entonces comprendo que todos, todos los que más o menos directamente trabajamos con los ácidos nucleicos formamos parte de esa gran escuela fundada por Francis Crick.

* * *

Hasta aquí, he presentado ante ustedes mis reflexiones personales sobre la figura de Francis Crick. Permítanme ahora que comente un dato y un sueño, también personales.

El dato es que estoy muy orgulloso de formar parte de una Facultad Universitaria que, en un momento concreto, decidió por unanimidad dar el nombre de Francis Crick a una de sus aulas. Este dato fue conocido por él y lo agradeció mediante una carta autógrafa que está depositada en el Decanato de la Facultad.

El sueño se refiere a una época pasada, incluso diría que lejana. Cuando yo fui Secretario General de esta Universidad, el Prof. D. Enrique Vidal Abascal venía con cierta frecuencia a visitarme y charlábamos de mil cosas a la vez que paseábamos por la Plaza del Obradoiro. Recuerdo que un día, en mitad de la plaza se detuvo, me cogió del brazo y mirándome a los ojos me dijo que la vida era corta, pero que si estaba bien aprovechada, podía ser muy fecunda.

Ahora mi sueño consiste en imaginar que, en caso de estar presente Francis Crick con nosotros, le habría dicho al Prof. Vidal:
- Enrique: me has quitado la frase de la boca...

 Señoras y Señores, compañeros todos, Muchas gracias.


viernes, 23 de marzo de 2018

Así, no


Si miramos la historia de la Biología, podemos dividirla en dos grandes etapas: la clásica y la moderna, o molecular. Aristóteles es el padre de la biología clásica: todas las ramas de la biología clásica comienzan en sus estudios y escritos. Francis Crick lo es  de la biología molecular.

Aristóteles estudió e interpretó todo lo que era posible estudiar y explicar en su época. Algunas aportaciones suyas, como su clasificación de los animales, han sido de utilidad hasta hace bien poco. Su obra sobre animales, Historia animalium, sigue un esquema general que nos resulta conocido, pues cada capítulo está dedicado a un animal concreto. En él se describe la morfología del animal, así como sus costumbres, sus comidas y una larga suma de detalles que nos dan una visión completa del animal en cuestión. Y así con todos los que trata en su libro.

Escenario de la vida en el monte

Este método de capítulos dedicados a cada animal, que se convierte en el protagonista de cada uno de ellos, se llamó en algunos casos Historia Natural y fue el utilizado por muchos científicos en épocas posteriores, incluso muy recientes. Nuestro querido, y añorado, Félix Rodríguez de la Fuente fue un seguidor de este modo de presentarnos las vidas de cada uno de los seres de nuestra fauna.

En cierto modo, todo esto se había modificado durante la Edad Media. Teniendo en cuenta que se había consagrado al hombre como Rey de la Creación, se consideraban a los animales como servidores suyos. Con ese criterio, los animales dejaban de tener vidas peculiares, solamente eran poseedores de cualidades que los humanos debían de estudiar para ver si sus conductas se reflejaban ellas. Si eran buenas, deberíamos imitarlos. Si malas, erradicarlas. Las hormigas nos enseñaban a ser trabajadores y ahorradores en previsión de malos tiempos. Las cigarras nos hablaban de las pérdidas de tiempo haraganeando y no previendo tiempos aciagos. La serpiente era traidora, y aún hoy, en 2018, se le considera un animal deleznable y traicionero. Por ella entró el pecado en la humanidad. El lobo es carnicero, el zorro engañoso y su nombre ha dado origen a diversos adjetivos referidos a conductas astutas.

Traidor, y astuto según nuestras
pautas.
Estamos en una época en la que podemos hablar con rigor de una biología moderna. Los documentales que se realizan para televisión se refieren mayormente a grandes ecosistemas en los que se nos enseña el curso de la vida a través de diversos animales concretos, que comparten territorio y lo largo de un período de tiempo previamente acotado. En ellos, la unidad de relato es el territorio y, mejor aún, el ecosistema. Recuerdo el ya antiguo de “Europa a través de un año”, en el que veíamos cómo las diferentes estaciones hacían vivir a los habitantes del continente, hombres incluidos, incidiendo en sus modos y costumbres a lo largo del año. Hay otros, más recientes, sobre grandes parques naturales. Éstos suelen ser espectaculares, pues producidos por grandes compañías, esperan ser distribuidos ampliamente con gran beneficio económico.

¿Cruel?
Las tomas ya digo, son espectaculares y supongo que muy costosas, pues conviene poner cámaras en lugares concretos y esperar que se produzcan hecho interesantes desde su aspecto biológico e impactante. Los consiguen. Vemos efectos inusitados de luz, relaciones materno filiales asombrosas, comportamientos de grupos nunca vistos y, en suma, aplaudimos a los realizadores y distribuidores de estos programas.

Los textos, no iban a se menos, están bien elaborados. Pero hay una palabra , y sus derivados conceptuales, que me sobra en ellos. O un criterio plasmado de varios vocablos, que me molesta, pues corresponde a un criterio anticuado, obsoleto. Según estos buenos documentales, los predadores siguen siendo traidores, astutos, engañosos, taimados y una serie amplia de adjetivos en los que se intenta definir un comportamiento reprensible.  ¿Es reprensible el comportamiento de los animales carnívoros? ¿Se quiere engañar a alguien? No me cabe en la cabeza pensar que exista un deseo de mantener una mentalidad antigua y perfectamente superada. Repito que el único taimado o astuto a la hora de matar en la naturaleza somos nosotros, que añadimos a nuestro instinto una cantidad de artilugios artificiales para hacer más eficaz el deseo de matar.

El más vilipendiado, aunque noble
En la naturaleza los animales comen para nutrirse, hay animales que cazan a sus presas vivas, y otros las comen muertas, recibiendo diferentes adjetivos según el modo de proveerse de ellas. Pero los documentales no se preocupan en diferenciar estas modalidades, ni muchos menos aclararnos la necesidad que tienen los carnívoros de cazar a sus presas. Ahí, en esos comportamientos, actúa la selección natural, ayudando a los mejor adaptados, pero esto no se dice nunca y los espectadores siguen pensando en costumbres que se deberían erradicar entre los animales, cuando son enjuiciadas solo con criterios humanos, nunca biológicos. He visto intentar matar a un águila por haber cazado un conejo mientras corría por el prado. No se le mató, pero se le maldijo. Repito, somos nosotros los únicos que matamos por matar y muchos piensan que los animales hacen lo mismo.

Como biólogo que llevo años trabajando en biología evolutiva, me duele mucho esta falta de comprensión de las dinámicas biológicas en nuestros montes, que es donde la vida se desarrolla. Me duele que se mantenga la visión errónea de estos procesos de los seres vivos y aún más desde medios  de divulgación tan poderosos como la televisión acompañada de imágenes grandiosas. 

Me gustaría que se explicasen mejor estas dinámicas, tal como las vemos hoy, pues este conocimiento sería una vía eficaz para interpretar mejor lo que ocurre en la naturaleza y gestionar, también de modo más adecuado y eficaz, todo lo concerniente al mundo natural. Explicar de modo adecuado lo que ocurre en la naturaleza es también un medio eficaz de protegerla.

viernes, 16 de marzo de 2018

Eficacia biológica

Me pregunta una amiga que qué es lo que se selecciona, lo que "ve" la selección natural en el momento de actuar, que cuál es su diana. Lo más sencillo para responder es que actúa sobre los fenotipos, sobre los aspectos externos de los individuos. Pero, ¿es siempre así? No, rotundamente no y quiero explicarlo en dos palabras.
Lo primero que quiero comentar es que nos encontramos con un muro intenso de desconocimiento que debemos ir desentrañando poco a poco y que, otro fallo nuestro, pensamos que existe una sola respuesta a esa pregunta y creo que no es así, que cada caso tiene su peculiaridad. No viene mal recordar que lo que ignoramos es mucho más que lo que conocemos y, pretenciosos como somos, con esos pocos conocimientos queremos explicar todo.


Enfrentándose a la selección natural
para ejercer la propia eficacia biológica.
Fotografía de Demetrio Fernández Vaquero

No cabe duda que el aspecto, al que llamamos fenotipo, tiene un papel importante en la acción de la selección natural. Nosotros mismos, al comprar una planta o al escoger una mascota nos fijamos de modo decisivo en su aspecto, ese componente que procede del equilibrio y la acción coadaptada de los genes del individuo. Queremos creer, y tenemos datos para proceder de este modo, que ese mismo aspecto es importante entre algunos animales a la hora de formar pareja y, si los caracteres que provocan tal elección son hereditarios, está claro que poseerlos confiere mayor adaptación a sus poseedores, que el carecer de ellos.


¿Llegarán a adultos?

No obstante, hay datos experimentales que nos indican que determinadas combinaciones de alelos de genes diferentes pueden contribuir de modo eficaz en el comportamiento adaptativo de sus portadores. Quiero hacer notar que, en este comentario, he pasado de la totalidad de un genotipo, unos 30000 genes, a una pequeña combinación de ellos.  Y, ya digo, estudios realizados de modo riguroso, nos hacen suponer que la selección "ve", nota y protege, algunos conjuntos de alelos concretos de genes diferentes.

También hay casos en los que un solo gen es capaz de determinar un comportamiento determinado. Es el caso de los genes letales, los que provocan la muerte de sus portadores. En este caso, la presencia de un solo gen en un genotipo es capaz de bloquear todo un proceso biológico por muy complejo que sea, determinando la muerte del individuo portador.

¿Alcanzarán el estado reproductor?
Entonces, cabe preguntarse, ¿gen, combinaciones de alelos, genotipos? ¿Cuál es la diana de la selección natural? No lo sabemos, en realidad. Hay estudios realizados con rigor, que indican que la respuesta es variada, como también es variada la acción individual de cada gen. Porque, eso sí, podemos suponer que todos y cada uno de los genes de un individuo contribuyen a su capacidad de contribuir a la formación de la generación siguiente. 

El individuo que tiene hijos fértiles, contribuye al mantenimiento de la población a la que pertenece y, por consiguiente, de la especie de la que forma parte. Del individuo que así se comporta, gracias a sus genes, decimos que posee "eficacia biológica". Incluimos el término eficacia por eso, porque desde el punto de vista individual, los individuos son o no son eficaces en la función biológica del mantenimiento de la especie. La eficacia consiste en eso, en contribuir a mantenerla.
Alcanzarán el estado adulto?
Hay muchos estudios acerca de la participación de determinados genes o genotipos a la eficacia biológica de seres vivos. Los estudios se hacen con rigor y utilizando grandes números de individuos. Como patrón se utilizan los individuos de fenotipo salvaje (en caso de animales) o silvestres (con vegetales) Los patrones se utilizan como referencia con la que comparar los resultados obtenidos a partir de los individuos que se estudian.

Pero, por causas no bien conocidas, siempre existe un ruido de fondo, indeterminado, que consiste en la mortalidad de las formas juveniles. Siempre es así y desconocemos las causas, pero nunca hay un cien por cien de supervivencia. De modo eufemístico decimos que el causante es el fondo genético del individuo, los cual viene a ser lo mismo que decir que desconocemos la causa, aunque queda como más disimulado. En los antiguos sobres de semillas, se indicaba el porcentaje de germinación de las mismas. Puede ser lo esperado que germinen cuando se siembren cien semillas, pero puede ser un valor ponderado en relación al valor de germinación de otras semillas tomadas como patrón.

Parece que digo que la eficacia biológica está relacionada con lo que protege la selección natural. ¿Es verdad? sí, pero es que, a veces, la selección no favorece un gen, ni una combinación de alelos, ni siquiera un fenotipo. Hay casos en los que la selección favorece grupos de individuos que muestran determinados comportamientos, por ejemplo cuidados de la prole o altruismo. Entonces hablamos de selección de grupo y los genes favorecidos son los que provocan esos comportamientos, aunque puedan perjudicar al individuo portador de ellos.

Tal vez haya que hablar más de estos temas en el blog.

viernes, 9 de marzo de 2018

Variabilidad y selección

En un artículo anterior, comentaba el número posible de gametos diferentes que puede formar un individuo, siempre que sea heterocigoto para varios genes. 

Como base, es preciso que exista variabilidad en los genes, que conocemos como variabilidad génica. Gracias a los diversos alelos y a sus posibles combinaciones, aparecen diferentes gametos y a esto le llamamos variabilidad gamética. Nos indica que los gametos producidos por un individuo heterocigoto no son iguales en cuanto a los alelos de los que son portadores. Como consecuencia de esta variabilidad gamética surge la variabilidad genotípica, cuando estos gametos fecundan o son fecundados para originar un nuevo ser. Al hablar de variabilidad genotípica, nos referimos a los diferentes genotipos que es posible encontrar en una población. 

Espermatozoides. Cada uno con un genoma diferente.
Variabilidad gamética


Todo esto está muy bien. Pero ¿realmente es así? Decididamente, no, y voy a explicarme o intentar hacerlo. En estas consideraciones anteriores me olvido de la selección natural y sus efectos. Además, estoy suponiendo que todos los genotipos se van a manifestar porque tienen las mismas posibilidades de hacerlo. Pero una cosa es que se formen esos genotipos (combinación de alelos coadaptados que posee cada individuo) y otra, muy diferente, que sus individuos portadores alcancen la madurez reproductora. Desde su nacimiento hasta alcanzar ese estado, está actuando la selección natural, favoreciendo a algunos individuos para ser los reproductores que formen la generación siguiente. Ese favorecer se realiza en detrimento de otros individuos portadores de otros genotipos, de otras combinaciones de alelos, que resultan menos favorecedoras a sus portadores.
Cada vegetal con su genotipo.
Variabilidad genotípica

Las poblaciones tienen tamaños variables, pero cada una en concreto suele tener uno casi fijo a lo largo de las generaciones. Ese tamaño viene determinado por los recursos, incluso territoriales, de que disponen sus miembros. Si pensamos en recursos, conviene tener en cuenta que muchas especies poseen profundos instintos explicables por la territorialidad. Entre nosotros, los humanos, también hay sutiles costumbres explicables por una territorialidad encubierta. Incluso en vegetales hay casos explicables por lo que podríamos llamar territorialidad vegetal. En estos niveles básicos se instala una competición entre individuos de una misma generación por seguir viviendo. (Lucha entre hermanos diría alguien con deseos de hacer de la biología una historia lacrimosa). 

Gran tamaño de población.
Es posible gran variabilidad
En el mundo natural, vemos la competencia entre individuos con dos modalidades, definida por la naturaleza de los contrincantes: o bien entre individuos de diferentes especies (competencia interespecífica), o entre individuos de la misma especie (c. intraespecífica), siendo ésta última la más feroz de las dos. Cuando son individuos de diferentes especies los que compiten, siempre existirá alguna característica propia de una de las especies donde no competirá con la otra, por ejemplo algún alimento que no es compartido. Pero en la competencia intraespecífica, ambos competidores comparten características biológicas de todo tipo. 

Es a este nivel donde, creo yo, se instala la competición entre genotipos, pues cada individuo tiene el suyo que le aporta sus propias potencialidades. Es posible que, gracias a los alelos que posee, un individuo esté mas adaptado que otro en un ambiente concreto, alcanzando, por tanto, el estado reproductor. Pero ese camino, más o menos largo, que va desde el huevo al estado reproductor, está jalonado por una gran mortandad. Fue precisamente esta gran mortalidad de las formas juveniles lo que hizo que Darwin comenzase a buscar una respuesta a la pregunta que planteaba un por qué. La respuesta fue la capacidad de adaptación de cada individuo, porque para Darwin, en contra del pensamiento del momento, cada individuo era diferente, singular. Creo que ésta ha sido una de las grandes aportaciones de Darwin a la biología y a la ciencia en general, la individualidad de cada ser vivo, salvo los casos de reproducción asexual. 

Supongamos que un individuo es heterocigoto en diez genes, y que en cada uno de ellos hay solo dos alelos. El número de gametos diferentes que podrá formar en relación a esos diez genes sobrepasa ligeramente el millar. Podemos preguntarnos si se manifestarán todos ellos. Lo primero que hay que suponer es que un gameto no se manifiesta, lo hace un individuo formado a partir de dos gametos, pero pensemos que cada uno de esos gametos lleva una combinación concreta de alelos. Los gametos se diferencian en sus combinaciones de alelos, pero cada una de ellas puede conferir a su portador una capacidad biológica diferente. Por otra parte, combinaciones de determinados alelos pueden generar la emergencia de características propias de esas combinaciones, que desaparecen al desaparecer tales combinaciones. Este conjunto de situaciones genera una gran variabilidad entre los individuos de cada generación, todos ellos sometidos a una gran competencia intraespecífica y extraespecífica. 

Tampoco está mal recordar ahora que es muy poco lo que sabemos en relación a lo desconocido, y nuestra arrogancia nos lleva a querer interpretar todo a la luz de nuestros escasos conocimientos. Así surgen tantas situaciones inexplicables. La lucha por el territorio, la posibilidad de escapar de predadores, la consecución de recursos, muchos otros factores que conocemos y los muchos más que desconocemos, provocan una gran competencia entre los individuos. Sus genotipos les llevarán al éxito o al fracaso, entendiendo como éxito la capacidad de reproducirse, es decir, poder participar en formar la generación siguiente y, de este modo, contribuir al mantenimiento de la especie. 

Todas estas consideraciones son aplicables a cualquier población natural. En todas ellas juega un papel fundamental la variabilidad que ellas mismas encierran, pues en tal variabilidad reside la potencialidad de generar diferentes individuos capaces de enfrentarse con éxito ante desconocidos efectos adversos. La variabilidad está encerrada en forma de dos genomas en cada individuo, cada gen con dos alelos. Si la población posee 15 individuos, se habrán formado a partir de 30 gametos y en esa pequeña cantidad es posible que no haya muchas posibilidades de generar individuos adaptados para inciertos cambios ambientales. Si la población es mayor, por ejemplo, 4.000, ya es otra cosa en cuanto a la posible variabilidad que encierran. 

Por eso es tan importante el tamaño de una población.

viernes, 2 de marzo de 2018

Primavera en puertas

En estos días pasados, he visitado el monte y he podido comprobar cómo la Naturaleza es fiel en sus citas. Las cigüeñas estaban en sus nidos y las mimosas lucían espléndidas con su amarillo inconfundible y ese olor que en el campo es dulce y agresivo en las casas. Todo llega en su momento y como podríamos haber esperado. Igual a sí misma, pero nunca monótona, Démeter está en puertas, como nos dirían los griegos. 


Y eso que el invierno no ha estado muy sujeto a unas reglas preestablecidas. Hemos tenido de todo, desde sequía preocupante a lluvias también preocupantes por su intensidad. Cuando allá por noviembre, otoño bien avanzado, veíamos que la sequía no tenía aspecto de dejarnos, yo pensaba en su incidencia sobre los seres vivos y, en especial, sobre los de vida corta, aquellas semillas que deberían estar germinando en aquel momento, pero los campos se veían resecos. Me preguntaba entonces hasta qué punto esa falta de humedad en el suelo incidiría de modo negativo sobre tales especies, provocando incluso extinciones.

Pero empezó a llover, y de qué modo. Torrentes de agua inundaron campos y llevaron por delante lo que encontraron, arrastrando tierras y cenizas procedentes de incendios forestales más o menos recientes. Más tarde vinieron nieves y qué nevadas, también hemos tenido calor propio de final de invierno, ahora volvemos a tener nieves, y quién sabe cómo terminaremos con todo esto. 

Realmente, creo que éste es un año más dentro del amplio ciclo de la Naturaleza, ni mejor ni peor. Uno más. Otra cosa es cómo afecte a los seres vivos que estamos en ella. Hay quien dice que el cambio climático afecta a la salud de las personas, porque el calor no deja dormir, lo cual me parece algo aventurado y falto de análisis riguroso. Más bien, un hablar por hablar, pero ya sabemos que puestos a eso, todos quieren decir esta boca es mía. En serio, ¿estos cambios nos afectan? Y cuando digo “nos” no me refiero a los humanos, hablo de todos los seres vivos, animales y vegetales de ciclos biológicos de diferente duración. Estaremos de acuerdo que un año más o menos fuera de lo normal, a ver a qué llamo “normal”, afectará poco a una sequoia, capaz de vivir algunos miles de años, pero incidirá negativamente en las poblaciones de Drosophila, que en la naturaleza viven tres meses. 


Es preciso hacer aquí muchas salvedades. Por una parte, ya está dicho, la duración de los ciclos biológicos, pero también los respectivos tamaños de población de las especies potencialmente afectadas. Recuerdo en años pasados haber encontrado alguna especie vegetal en algún lugar desacostumbrado y, al volverla a buscar en años posteriores, ya no encontrarla. ¿Qué había ocurrido? Simplemente, que aquellas plantas no generaron semillas que pudiesen germinar allí y, al no dejar descendencia, desapareció su presencia en el sitio concreto. Las poblaciones pequeñas tienen eso, su mayor riesgo de extinción debido a su menor variabilidad. Son poblaciones muy efímeras en cuanto a su presencia. 


Vamos a ver, si un gen tiene dos alelos (A y a) en una población dada, habrá dos posibles genotipos en relación a dicho gen: los portadores del alelo A y los del a. Si, además, el gen B tiene otros dos alelos, habrá otros dos genotipos en relación a ese gen : los portadores de B y los de b. Si consideramos la combinación de los dos alelos, habrá cuatro posibles genotipos AB, Ab, aB y ab. Así de simple. Si consideramos un tercer gen, D, también con dos alelos, los genotipos posibles teniendo en cuenta los tres genes, será ocho: ABD, ABd, AbD, Abd, aBD, aBd, abD y abd. Cada vez que consideramos un nuevo gen con dos alelos, multiplicamos por dos el número de gametos diferentes teóricamente esperados en relación a los genes que consideramos. 


En el fondo, para calcular el número posible de gametos diferentes formados por un heterocigoto, basta con elevar 2 a una potencia igual al número de genes heterocigotos que consideramos. Ej 2 elevado a 3 (dos al cubo)  en el caso que hemos considerado de tres genes. Si imaginamos un cuarto gen (E y e), los gametos posibles serían 2 elevado a 4 , pues cada gameto de los ocho anteriores se diferenciarían según fuesen portadores de uno u otro alelo E ó e. En las poblaciones naturales, si un individuo es heterocigoto para 40 genes, y me quedo corto en cálculo, el número teórico de gametos diferentes será de 2 elevado a 40, un número muy elevado, para el que se precisa un alto tamaño de población si es que se pretende que todos los gametos lleguen a formar un individuo. Fijaos que sólo hablo de genes con dos alelos. Nosotros tenemos varios genes con más de dos alelos cada uno. 


Aquí tenemos dos tipos diferentes de variabilidad, o dos grados suyos. La fundamental es la variabilidad génica, consistente en que haya genes con alelos diferentes que realizan sus funciones con ligeras variaciones, siempre compatibles con la vida de su portador. En caso contrario, hablaría de genes letales. Sobre esta variabilidad génica se sobrepone otro tipo de variabilidad, la variabilidad genotípica, que nos habla de los diferentes genotipos que se pueden formar a partir de las posibles combinaciones de los diferentes alelos. 


Esta variabilidad genotípica es la que, mediante sus individuos portadores, se presenta ante la selección natural, que favorecerá a los mejor adaptados para que originen la generación siguiente. Muchos de sus hermanos morirán a causa de esa misma selección, aunque por lo general esas muertes no significan pérdidas de alelos. 

Pero, siempre ha de haber un pero, para que todo esto ocurra, de modo que la extinción no sea un peligro inminente, las poblaciones han de tener amplios tamaños para, de ese modo, permitir la expresión del mayor número posible de genotipos. Aristóteles lo dijo y hoy lo repetimos con base genética: salvo casos de reproducción asexual, no hay dos individuos iguales. Es decir, cada genotipo es irrepetible y tiene su respuesta propia ante la selección natural. 

En una población amplia, es de esperar con fundamento biológico, que haya individuos preadaptados a condiciones extremas que puedan aparecer. Pero, insisto, la población debe ser amplia.