viernes, 28 de julio de 2017

Sobre extinciones

Las diferentes ciencias son ramas del saber que encierran criterios y conocimientos sistematizados, que constantemente están en revisión y, por tanto, en crecimiento actualizado. La biología no es ajena a este continuo cambio.
Cuando paseo en pequeños grupos por algún lugar con vegetales, siempre pienso en la función silenciosa que están realizando, de la que nos beneficiamos todos. Es curioso, para muchos los vegetales no son seres vivos. Desconozco qué lugar le asignan en sus mentes, pero para ellos una cosa son los animales y otra, diferente e inferior, los vegetales. No sé cuándo los vegetales alcanzarán el r/econocimiento popular de “seres vivos”. A todos los niveles. Causa mayor revuelo social el que una especie animal se encuentre en peligro de extinción y no que sea una vegetal la que afronte tal situación.



Pinus sylvestris, hoy en alta montaña de Galicia

Me encuentro muy cómodo entre vegetales. Pasear entre ellos genera muchos temas de conversación sobre biología. Grandes ideas, conceptos claves de biología han surgido del estudio de las plantas. Me asombra su diversidad, teniendo en cuenta su inmovilidad e indefensión derivada, como ocurre en una gran cantidad de especies. Me explico. Si un animal está en un lugar adverso, puede cambiar de sitio. Si lo hacen poblaciones enteras, hablamos de grandes migraciones, pero no extinciones. El registro fósil nos indica hechos de este tipo. Pero si una planta, si una población de plantas, se encuentra con un cambio ambiental adverso, a no ser que tenga un formidable mecanismo de dispersión de semillas, o la suficiente variabilidad génica, está abocada a la extinción. También hay casos de este tipo detectados en el registro fósil. Una población de plantas no dispone de mecanismos que le ayuden a escapar de situaciones adversas. El estudio de polen fósil nos indica cómo en amplias áreas fue cambiando la flora un poco más tarde de producirse cambios climáticos climáticos. Plantas que antes estuvieron por toda Europa, hoy están relegadas a sistemas montañosos fríos. Pero esto que digo puede inducir a error. En aquel tiempo, toda Europa tenía otro clima, propicio a esas plantas. Hoy sólo quedan reductos de aquel clima y en ellos, aquellas plantas. Pienso, por ejemplo, en el Pinus sylvestris o el Sorbus aucuparia, el Serval de las montañas, hoy en zonas de montaña pirenaicas. También, ya he comentado, la población puede sobrevivir si dispone de variabilidad génica.


Serval, en alta montaña de Galicia

He indicado, casi sin quererlo, algunos de los mecanismos de los cambios evolutivos. Los grandes mecanismos, que podemos agrupar en agentes interiores y agentes exteriores, siendo muchas veces estos últimos los desencadenantes de dichos cambios. Dije en otro lugar que la unidad de evolución es la población. No es el individuo, es la población la que evoluciona a lo largo de las generaciones. Para que esto ocurra, la población ha de tener suficiente variabilidad génica, es decir disponer de diferentes alelos para realizar una misma función biológica, por ejemplo color de pelaje en unos mamíferos o coloración de flor en vegetales. Gracias a poseer variabilidad génica, los individuos pueden presentar variabilidad fenotípica y, ante esa variabilidad, la selección pude actuar favoreciendo a algunos.
Hoy, con las condiciones ambientales actuales, las morfologías que vemos en el monte, poco variables, son favorecidas por la selección natural generándose los aspectos (fenotipos) que llamamos salvaje en animales y silvestre en vegetales. Pero en cada generación aparecen individuos con aspectos no favorecidos actualmente, que son eliminados por la selección natural. Esto es normal y se cumple siempre con un bajo porcentaje. Es un lastre de las poblaciones que poseen variabilidad génica, el hecho de que en cada generación aparecen individuos que no están adaptados a las condiciones ambientales del momento, pero sí pueden estarlo para condiciones futuras.

Archaeopterix, eslabón evolutivo
entre dinosaurios y aves

En casos de poblaciones no adaptadas a cambios puede producirse su extinción. También el registro fósil nos permite decir esto, pero con criterio biológico eso se considera como un fracaso evolutivo. Fracaso porque, por diversas causas, el patrimonio génico de la población no fue capaz de adaptarse a nuevos cambios, dando lugar al final de toda una historia evolutiva, la de ese grupo. En un momento concreto, una generación no fue capaz de generar la siguiente y, en consecuencia, la población fracasó. 
En lo de adaptarse a cambios ambientales, las poblaciones lo hacen aunque tal proceso implique un cambio de aspecto, de morfología o, incluso, de comportamiento. La historia biológica continua, aunque el grupo anterior ha desaparecido dando lugar a uno nuevo. A esa desaparición se le conoce como extinción filética. En ella, el grupo (el Philum) ha desaparecido desde un punto de vista morfológico, pero su patrimonio génico sigue evolucionando. Hay fósiles que también nos permiten hablar de este tipo de extinción. La más conocida es la de los dinosaurios que, como tal, se extinguieron dando lugar a las aves a través de formas intermedias, de las que se conservan testimonios fósiles.
Suele ocurrir de este modo, que los cambios ambientales generan modificaciones en los criterios de selección. Los individuos deben tener formas adaptadas a esos posibles cambios. Tal vez antes no estaban adaptadas a otras condiciones ambientales, pero ahora esas condiciones han cambiado y los adaptados de antes han dejado de serlo. La población sigue viva, aunque cambie de aspecto o de hábitat. Su permanencia, su supervivencia, es un éxito.
Recuerdo un concepto que tal vez ahora es tratado de modo diferente. Me refiero al llamado desastre ecológico. Se calificaba de tal modo al cambio drástico, intenso y muy corto en el tiempo, de modo que no permitía que las poblaciones reaccionaran ante él, extinguiéndose consecuentemente. Era un desastre por provocar extinciones.

viernes, 21 de julio de 2017

Animales y vegetales

En una entrada anterior, comenté la necesidad de comer para crecer. Realmente, con la comida y la digestión posterior, la materia orgánica que toma un ser se transforma en materia específica suya, después de un proceso más o menos elaborado. Todos necesitamos esa materia para crecer y también para nuestro propio mantenimiento, después de que el crecimiento ha cesado.

En pocas palabras, consiste en esto. Si nosotros comemos carne de ternera, es un decir, en esa carne van proteínas de ternera. Sintetizadas de acuerdo con las pautas de síntesis de ternera, contenidas en sus genes y construidas con aminoácidos. La digestión realizada en nuestro tubo digestivo, va a consistir en disgregar esas proteínas hasta convertirlas en sus aminoácidos constituyentes. Luego, nuestro metabolismo generará proteínas de acuerdo con nuestras pautas de síntesis determinadas por nuestros genes, pero utilizando esos aminoácidos que, hasta hacía poco tiempo, formaban parte de proteínas de ternera.

La energía entra en nuestro mundo

Por otra parte, hemos de tener en cuenta la energía que consumimos para poder realizar nuestras actividades vitales. Crecimiento, mantenimiento, síntesis y otras tantas, son actividades que requieren su aporte de energía. ¿De dónde procede esa energía? Esa energía recorre un camino largo y bien definido que, procedente del sol, pasa por nosotros mismos, hasta terminar en otros seres. Todos consumiendo la energía encerrada en las moléculas orgánicas.
Me gusta considerar al mundo de los seres vivos como un todo armónico y complementado, en el cual cada parte tiene su papel bien definido. Indudablemente, la energía es vital con una necesidad inmediata y es posible comentar su ciclo en nuestro mundo, cómo va pasando de unos a otros seres de un modo estructurado, nunca anárquico. Pero también podríamos hablar del ciclo del agua o del carbono, por citar dos casos.

Bosque a orillas del río Miño.
Función clorofílica en marcha

La energía capaz de activarnos, procede del sol. Hay algunas excepciones en el mundo de las bacterias, que consisten en obtener la energía a partir de reacciones con metales, hierro por ejemplo, pero la mayoría de seres vivos actuamos gracias a la energía procedente del sol. Cuando digo mayoría me refiero a grupos abundantes en número y en diversificación. Este dato hace pensar en un amplio camino evolutivo, con éxito adaptativo.
Únicamente los vegetales son capaces de captar esa energía mediante una compleja serie de reacciones llamada en su conjunto “función clorofílica”. Utilizando agua, anhídrido carbónico (procedentes del aire o de su entorno) y energía lumínica (procedente del sol), los vegetales son capaces de sintetizar hidratos de carbono, que son moléculas con varios átomos de carbono, normalmente 6, unidos con enlaces ricos en energía. Cuando se rompan los enlaces, se desprenderá la energía encerrada en ellos. Esa energía ha procedido del sol, y a partir de ese momento, ya está presente, ya ha penetrado, en el mundo orgánico, el de los seres vivos.
Esos hidratos de carbono, ricos en energía, pueden ser utilizados directamente por los vegetales para su metabolismo, ser almacenado como substancia de reserva (almidón), o adquirir funciones estructurales en forma de celulosa, formando láminas y membranas.

La energía entra en el mundo de los heterótrofos

Otros elementos necesarios para su metabolismo (pienso en plantas terrestres), como agua y minerales, lo absorben mediante las raíces. Gracias a la energía captada mediante la función clorofílica, las plantas son capaces de sintetizar todo cuanto necesitan para estar presentes en este planeta, como pueden ser aminoácidos o vitaminas. Por eso, porque son capaces de mantenerse por sí mismos, en biología los conocemos como seres “autótrofos”, una palabra de origen griego que quiere decir que comen por sí mismos.
Hay otro grupo de seres vivos, al que pertenecemos nosotros, que somos totalmente incapaces de captar la energía exterior para encerrarla en moléculas orgánicas. Es el grupo de los animales, conocidos como “heterótrofos”, palabra también de origen griego y que significa que comemos a partir de otros.
De lo mucho que necesitamos, nada podemos sintetizar: aminoácidos, vitaminas, fuentes de energía. Todo lo hemos de tomar en la dieta, por eso dependemos de ella. Esto hace que los diferentes grupos zoológicos dispongan de aparatos digestivos específicos y de maneras, también específicas, de captar los alimentos. Desde la absorción a través de una piel casi permeable, a la posesión de bocas con capacidades trituradoras de los alimentos, podemos imaginar toda una amplia gama diversa que también tiene mucho que ver con las maneras de captar los alimentos.
La evolución ha tenido un papel importante al diversificar los modos de captar energía. Al aparecer nuevos modos, y consolidarse en grupos, fue siendo posible colonizar nuevos hábitats. Cuando finalizan los procesos bioquímicos, una vez extraída la energía encerrada en las moléculas biológicas, sólo queda otra vez, agua y anhídrido carbónico. La energía la hemos consumido. Hay toda una cadena de seres vivos que van transmitiendo esa energía. Desde los vegetales, pasando por diferentes grados de animales herbívoros, luego diferentes tipos de carnívoros para terminar en seres propios de la putrefacción. Por todos esos eslabones va pasando la energía que, procedente del sol, va vivificando a aquellos que la poseen en un momento concreto.
Nosotros tenemos que tomar alimento de modo constante, pues lo mismo que hay compuestos que podemos almacenar como reservas, caso de los hidratos de carbono y grasas, hay otros que no podemos almacenar y hemos de tomar de manera constante, como las  vitaminas.

Un carnívoro persigue a un herbívoro:
la energía fluye

Para mí, ésta es la diferencia fundamental entre vegetales y animales: su comportamiento en relación a la energía, en cómo solucionan su necesidad de ella. Los vegetales son capaces de captarla y encerrarla en materia orgánica que sintetizan. Se alimentan por sí mismos, son autótrofos. Los animales, necesariamente hemos de tomar nuestros nutrientes y la energía que necesitamos mediante la ingesta de productos ricos en ella. Son heterótrofos.


viernes, 14 de julio de 2017

Hablando de seres vivos

Me gustaría hablar de nuevo aquí sobre seres vivos, y voy a hacerlo. Hablar de los seres que viven, que tienen vida. Pero, ¿qué es vida? Es una pregunta que ha tenido diferentes respuestas a lo largo de la historia. Hubo un tiempo en que se pensó que era un soplo. Según el Génesis, Dios hizo una figura de barro, sopló sobre ella y ésta adquirió vida. Hoy han cambiado mucho nuestros conocimientos y conceptos sobre este tema.

He dicho muchas veces que tenemos ambigüedad al utilizar esta palabra. Porque “vida” puede ser la historia biológica de alguien (la vida de fulano); también entendemos como tal el modo de transcurrir el tiempo por parte de alguien (llevó una vida…); o, en otro plan, puede ser la duración estimada de un aparato caduco (esta bombilla tiene una vida de tantas horas). Pero también, vida es una actividad esencial mediante la que actuamos los seres que, por tenerla, merecemos el calificativo de seres vivos. En este plan, vida es la energía de los seres orgánicos. 

Ser vivo

Estos conceptos son de este tiempo. En el Renacimiento, se sabía que los estados de la materia son sólido, líquido y gaseoso. El paso de un estado a otro era simple y sencillo: evaporación, ebullición, solidificación eran procesos reversibles conocidos por los hombres de ciencia. También los seres vivos morían en un instante y, al igual que el resto de cambios conocidos, se podrían producir en ellos los movimientos inversos. Los seres inertes podrían adquirir vida. Había que conocer cómo, la fórmula de producirla, pero el hecho era real y constatable. La idea de la generación espontánea era admitida en general, existiendo múltiples fórmulas para conseguir la producción de animales: de ratones, arañas, lombrices y un largo etcétera. Según esta suposición, la vida era una actividad susceptible de ser creada en condiciones adecuadas.

Seres vivos

Fue a partir del siglo XVII cuando se empezó a dudar de esta hipótesis. Redi, Spallanzani y Pasteur demostraron, cada uno en su tiempo, la inexactitud de esta hipótesis y Pasteur resumió su descubrimiento con el aforismo omnis vivo ex vivo. Todo ser vivo procede de otro ser vivo. También, como consecuencia lógica de esto dijo que “la vida no se crea, simplemente se transmite”. Todo esto generó una nueva visión acerca de los seres vivos y su mundo. 

Tal vez sea posible escapar de la definición de “vida” para quedarse en la de “ser vivo”, pero volvemos a lo mismo. ¿Realmente sabemos qué es un ser vivo? Sí y no. Me explico. Sabemos de lo que hablamos cuando nos referimos a ellos. No es una metáfora, no. Es algo muy concreto y lleno de significado. Incluso adjudicamos características de ser vivo a algo, un movimiento ideológico, por ejemplo, cuando decimos de él que está vivo o muy vivo. Queremos indicar que se renueva, que se expande, que se mueve.
 
Ser vivo

Pero hay muchos seres vivos, mucha diversidad entre los seres vivos. La idea de los científicos es que la vida, tal como la entendemos hoy, se inició una sola vez. Tal vez antes hubo moléculas con características prebióticas, pero la vida que disfrutamos y de la que participamos todos, tuvo un solo inicio hace miles de millones de años. Darwin nos explicaría el origen y el mantenimiento de la diversidad actual, pues lo cierto es que todos tenemos un mismo origen y sirve de muestra el nivel bioquímico.

Todos guardamos nuestra información genética en los ácidos nucleicos. Recuerdo, hace años, cuando se estaba dilucidando el código genético. Se hacía en laboratorio, claro. No faltaron quienes dijeron que después de dilucidado, habría que deducir qué claves correspondían a vegetales y cuáles a animales. A todos nos pareció lógico. La sorpresa, la gran sorpresa, llegó cuando se comprobó a ese nivel bioquímico todo era similar, tanto en el mundo animal como en el vegetal y en bacterias. ¿Qué quiere esto decir? Pues sencillamente, que ese camino de consolidación como seres vivos fue un camino que recorrimos juntos, que es una historia común. Luego, más tarde, vendrían las diversificaciones.

Seres vivos

También tenemos común el modo de duplicación de los ácidos nucleicos y los enzimas que intervienen en el proceso. Es también común el número y la naturaleza de los aminoácidos, los componentes de las proteínas y su mecanismo de síntesis. 

Si embargo, soy consciente que estoy diciendo cosas, pero no digo qué es un ser vivo, ni qué es la vida. Desde niño, ya en la escuela, aprendí que los seres vivos “nacen, crecen, se reproducen y mueren”. También que las funciones de los seres vivos son “de relación, de nutrición y reproducción”. Con anterioridad hablé aquí de mi modo de entender eso de que los seres vivos nacen y crecen. Pero ahora, quiero seguir comentando cómo entiendo esas funciones propias de los seres vivos. Comunes a todos.

En clase, para hacer ver a mis alumnos la complejidad del mundo de los seres vivos, les aconsejaba que imaginasen un árbol, un liquen, una planta y un mamífero. ¿Qué compartimos? Estamos vivos, tenemos la información biológica encerrada en ADN, compartimos el modo de transcripción del mensaje genético. Luego, cada cual con sus genes, que se adapte a su ambiente, que crezca y se reproduzca.

Hablaremos de esto…

sábado, 8 de julio de 2017

Los seres vivos crecen

Esta entrada es similar a otra que, con el título "Crecemos", publiqué hace unos días en el Paseante reflexivo. Puesto que ese Paseante se marcha, quiero traer aquí este texto, pues forma parte de un conjunto de cuatro, en los que comento nuestras actividades: nacer, crecer, reproducirnos y morir.



Cuando éramos niños, tuvimos como ciertas muchas cosas que no lo eran. Hoy sabemos que el ratoncito Pérez no colecciona dientes de niños, ni las cigüeñas los traen desde París. Tampoco existen pajaritos chivatos que cuenten a los mayores lo que hacemos. Nos dijeron hasta la saciedad que teníamos que comer si queríamos crecer. Eso era cierto. El crecimiento requiere aporte de material extra que sólo nos llega a través de la dieta.  

Los seres vivos crecen, pero ¿qué entendemos por crecer? No hay duda que cuando decimos “crecen”, interpretamos que los seres que desarrollan tal actividad, se encaminan hacia una plenitud y una madurez mofológica y fisiológica. En términos generales, decimos que crecen cuando aumentan de tamaño. Puesto que en biología siempre hay más de una forma de que se realice un proceso, también hay más de un modo de crecer. Un organismo pluricelular crece o bien porque aumenta el número de sus células integrantes, que mantienen su volumen inicial, o bien porque aumenta el tamaño de ellas, aunque no aumentan en número. 

Sea del modo que sea, los seres vivos pluricelulares crecen si tomamos como momento inicial de su vida el de su nacimiento. Los tamaños más grandes entre los seres vivos actuales se dan en especies vegetales.

ANIMAL ADULTO
La mayoría de seres tienen un crecimiento controlado, de manera que cuando alcanzan un determinado tamaño, definido para nosotros en términos estadísticos, ese proceso se detiene. Todos estamos acostumbrados a los tamaños estándar de los miembros de cada especie de seres vivos que conocemos y, aunque no tengamos medidos tales tamaños ni los recordemos con detalle, a algunos individuos los encontramos muy grandes o muy pequeños, cuando sobrepasan tales límites. Por eso hablamos de una vaca muy grande o un abeto muy pequeño, por citar dos ejemplos, aunque no sepamos sus dimensiones medias.

ÁRBOL ADULTO

Muchos seres pluricelulares cuando crecen, no sólo aumentan de tamaño, también sus células van diferenciándose adquiriendo capacidades y funciones singulares y diferentes. De este modo se pueden ir generando órganos con actividades especializadas. Mientras los seres se van desarrollando y adquiriendo estas cualidades, decimos que son formas juveniles, y consideramos que han alcanzado la madurez cuando alcanzan plenamente todas sus funciones, incluyendo la capacidad reproductiva.

lARVA

El crecimiento puede ser mediante formas intermedias, las larvas, que son voraces y que, tras un período de cambios, que se realizan con quietud, se transforman en adulto. En estos casos, los adultos generan huevos de los que nacen las larvas. Éstas sufren modificaciones morfológicas (metamorfosis), dando lugar a los adultos. Muchos insectos tienen larvas en sus ciclos biológicos, pero también hay vertebrados (ranas) que las tienen.

Siempre el crecimiento implica un aumento del propio material. Eso se realiza transformando en material propio el que se ha tomado en la comida o el sintetizado de nueva creación. En ambos casos, moléculas que no formaban parte del individuo que crece, pasan a formar parte de sus estructuras mediante reacciones metabólicas concretas.

HOJAS JUVENILES DE EUCALIPTO
En vegetales hay especies, como el eucalipto, con dos tipos de hojas, pues las formas juveniles del árbol presentan unas hojas con forma y color que no tienen nada que ver con las del árbol adulto. Se llama dimorfismo foliar y está relacionado con la edad del individuo.

En árboles y arbustos, aunque el crecimiento se detiene cuando se alcanza ese tamaño concreto que antes comentaba, no debemos considerar que hayan perdido su capacidad de crecimiento. Si se poda ese árbol o ese arbusto, las ramas volverán a crecer hasta alcanzar el tamaño anterior a la poda. Alcanzar esos tamaños y detenerse en esos momentos, son procesos regulados genéticamente.

ALOMETRÍA. EN HUMANOS, DIFERENTES PROPORCIONES CORPORALES SEGÚN LA EDAD

Por otra parte, puede ocurrir que el crecimiento no sea armónico. Existe una velocidad de crecimiento diferente en las diferentes partes del cuerpo, y a esto le llamamos alometría. En nosotros, los humanos, las piernas y los brazos crecen a unas velocidades diferentes al tronco y cabeza, por lo que los niños tienen unas proporciones corporales diferentes a los adultos. Este proceso diferencial se descubrió en el Renacimiento. Los pintores anteriores a esa época, al pintar al Niño Jesús no pintaban un niño, pintaban un hombrecito, pues le adjudicaban las proporciones de hombre adulto.

LARVAS DE RANA
De todas formas, vemos que existen múltiples estrategias en los seres vivos para alcanzar el estado adulto. Eso significa incremento de tamaño y cambios fisiológicos que, en general, reciben el nombre genérico de “crecer”.

Por otra parte, podría decir que en los seres vivos ha dos tipos de crecimiento: el indefinido y aquel que se detiene en un órgano cuando éste alcanza un tamaño determinado. Por ejemplo, en árboles, el porte general sigue un ritmo de crecimiento indefinido, mientras que sus hojas  lo tienen determinado hasta alcanzar un tamaño muy concreto. En nosotros, cejas, pestañas y vello corporal crece hasta alcanzar una determinada longitud. El pelo del cuero cabelludo y el de la barba sigue la pauta de crecimiento indefinido. 

En este caso, hay quienes llaman "cabello" al de crecimiento limitado en su tamaño, y "pelo" al de crecimiento indefinido.

Todos estos procesos relativos al crecimiento están regulados genéticamente y son objeto de estudio, pues algunas pautas nos resultan completamente desconocidas.