viernes, 22 de septiembre de 2017

Genes inmigrantes


Vamos a echar unas cuentas. Supongamos una población natural de 100 mamíferos. Incluso, y ya es mucho suponer, pensemos que forman 50 parejas, es decir hay 50 machos y 50 hembras. Para ese tamaño censal de población, el tamaño eficaz es el máximo.

Vámonos a los orígenes de esos 100 individuos. Se han formado gracias a 200 gametos, 100 óvulos y 100 espermatozoides. Hay, por tanto, 200 copias de cada gen en esa población (salvo los ligados al sexo, de los que hay 150). Vamos a descartar la más que segura consanguinidad entre esos 100 mamíferos componentes de esta hipotética población.


Algunas poblaciones de aves son muy numerosas 

Si la tasa de mutación para cada gen viene a ser de un mutante nuevo por millón de gametos, podemos calcular que en estos 200 gametos hay pocas mutaciones nuevas y que, por tanto, será escasa la variabilidad génica que se pueda estar generando en sucesivas generaciones. 

Indudablemente, es en esa variabilidad donde está encerrada la posibilidad de adaptación ante posibles cambios que se produzcan, en las condiciones ambientales en las que se desarrollan las actividades de esta imaginaria población. Pero muchos saben que este tamaño de 100 individuos es una estima alta y que, normalmente, las poblaciones naturales de mamíferos suelen ser menos numerosas. 

Las poblaciones de mamíferos
son de menor tamaño
En estos casos de pequeñas poblaciones, podemos calcular que la mutación, aunque real, es un fenómeno escaso, casi ausente de ellas y, puesto que son la fuente principal de variabilidad génica, la única variabilidad que puede existir en esta población es la genotípica. Es decir, genotipos diferentes, siendo los genotipos las combinaciones de alelos disponibles. Pero los genotipos son efímeros en animales, sólo duran lo que dura un individuo, pues al formar gametos se disgregan. En vegetales, debido a su posibilidad de reproducción asexual, los genotipos pueden ser más duraderos. 

En poblaciones pequeñas, y una formada por 100 individuos lo es, existe un gran peligro de consanguinidad, con todo lo que esto lleva consigo de negativo. En poblaciones exiguas, no sólo es peligrosa la poca variabilidad génica, también es alarmante la alta tasa de consanguinidad que puede existir entre sus miembros. 

Poblaciones humanas pequeñas suelen
tener problemas genéticos
Existe otra fuente natural de variabilidad génica, y es la inmigración. Consiste en la llegada a una población de un individuo de la misma especie, pero procedente de una población alejada. Que venga o no para quedarse, es cosa de fábulas. Lo importante es que se cruce con individuos residentes de la población y deje descendencia con sus genes que, con toda probabilidad, no todos ellos serán iguales a los existentes en la población de acogida. 

La frecuencia de aparición de los alelos así llegados a esa población receptora es mucho más alta que la que podría esperarse si apareciesen en gametos. Además, la probabilidad de que el gameto portador del nuevo mutante alcanzase el estado adulto es muy remota, y en el caso del inmigrante, llega como adulto que ha superado la acción de la selección natural. Todo son ventajas, como vemos. 

En algunas tribus africanas, los muchachos
inmigrantes son muy bienvenidos
¿Quién es mejor inmigrante, un macho o una hembra? Hay estudios, no rigurosamente confirmados, que indican que los individuos foráneos poseen mayor éxito reproductor que los residentes, incluso en humanos. Pero una hembra de mamífero, debido a su modo de reproducción, está ocupada en la procreación durante un cierto tiempo, mientras que un macho puede reproducirse de modo más despreocupado, al no tener problemas de dedicación a la progenie. 

He comentado situaciones similares en humanos, cómo chicos y chicas adoptan modos y costumbres tendentes a romper situaciones consanguíneas. Hay situaciones históricas que nos hablan de mezclas de poblaciones originadas por migraciones, dando como resultado un enriquecimiento biológico en todos los sentidos. También se citan casos de tribus africanas en las que, cuando llega un muchacho procedente de otra tribu, se le premia eximiéndoles de los trabajos tribales durante un año. Este es un caso comparable al de los machos inmigrantes que he comentado. 

En la actualidad existen programas de renovación génica para poblaciones naturales en peligro. Se hacen al amparo de parques zoológicos y consisten en intercambios recíprocos de machos procedentes de las zonas geográficas afectadas. Esos machos se mantienen con hembras de las poblaciones receptoras durante un tiempo, pasado el cual, el macho se retorna a su población originaria pero ha dejado copias de sus genes en las poblaciones de las que procedían las hembras. Realmente, se ha copiado el efecto que podría haber tenido la inmigración de ese macho. Nacerán hijos suyos con alelos nuevos en las poblaciones receptoras, pero todos ellos serán medio hermanos. La consanguinidad previa no se elimina, pero al menos se conjura el peligro de poca variabilidad génica. 

Lo del tamaño de población es un problema en todos estos casos. Pocos individuos, aparte de ser parientes, no pueden presentar una amplia variabilidad genotípica. Esta variabilidad se refiere a los diversos genotipos que se pueden generar a partir de una variabilidad alélica determinada. El que existan mucha variabilidad genotípica es importante de cara a la selección natural, pues no todos los genotipos posibles tienen la misma capacidad adaptativa

Y de eso se trata en la supervivencia de una población, de que haya individuos portadores de genotipos con diversa capacidad adaptativa, de modo que la selección natural, pueda escoger entre ellos. La selección natural escoge, pero para eso es necesario que haya variabilidad donde escoger.

viernes, 15 de septiembre de 2017

Genoma y genotipo

Aunque Mendel publicó su descubrimiento en el siglo XIX, no fue hasta el siglo XX cuando la Genética alcanzó un desarrollo espectacular. Mendel se adelantó a los conocimientos de los que se disponía sobre biología celular, y así sus resultados quedaban como muy teóricos y difíciles de interpretar, al carecer del soporte que proporciona conocer la base estructural de los fenómenos. En el año 1900 ya se conocía el proceso de formación de gametos, la existencia de los cromosomas, la división celular y otros procesos celulares, de modo que fue sencillo interpretar todo lo descubierto por Mendel. Podemos decir que es entonces cuando nace la Genética y comienza su desarrollo.


No hay duda de que esta nueva ciencia generó, por necesidad, la aparición de nuevos conceptos, uno de ellos el de genotipo, referente al conjunto de genes que posee un individuo. He hablado en más ocasiones de que la biología no guarda sus conocimientos en leyes, como hacen otras ciencias. Los conocimientos biológicos están contenidos en conceptos continuamente revisables, según aumenta lo que se va sabiendo acerca de modos, estructuras y procesos. En no pocas ocasiones, la historia de un concepto biológico viene a ser similar a la historia de la rama de la biología en la que se alberga dicho concepto. Así ha ocurrido con el concepto de gen, de genotipo, de mutación o de cromosoma, por citar unos cuantos ejemplos.

Siempre un enigma

Aunque los ácidos nucleicos habían sido descubiertos en el siglo XIX, no fue hasta el siglo pasado cuando se descubrió su estrecha vinculación con la herencia biológica, hasta llegar el momento de conocerlos como su único vector. Estos descubrimientos, se hicieron en la primera mitad del siglo XX y los investigadores que los realizaron fueron galardonados con sendos Premios Nobel (Por cierto, cuando se le dio a Watson y a Crick, no faltó quien dijese que ya se premiaba “el estudio de tonterías”). 

Al poco de conocer la estructura del ADN, comenzaron a realizarse estudios sobre su misma estructura y función, muchos de ellos relacionados con las secuencias de los nucleótidos integrantes. (Si comparamos los ácidos nucleicos con largas cadenas, los nucleótidos son como sus eslabones). Con la mejora de técnicas, ese estudio de secuencias de ADN relacionadas con funciones concretas, constituyó un reto para los investigadores, y así se conoció la secuencia de nucleótidos que determina el inicio de un gen. Hasta donde yo sé, todos los genes se inician con la misma secuencia de nucleótidos, que es relativamente larga y lógica desde un punto de vista de actuación bioquímica.

El reto planteado

Realmente todo esto desencadenó una carrera investigadora entre departamentos punteros en el mundo, que presentaban novedades cada poco, tanto en resultados concretos como aportando nuevas técnicas de trabajo. En este plan, pronto se planteó el reto el dilucidar la secuencia de nucleótidos constituyentes del ADN completo de un individuo. Apareció el concepto de genoma.

La cantidad de ADN necesaria para que se desarrolle plenamente un individuo va encerrada en un gameto. En él, por ejemplo, va una copia de cada uno de nuestros 23 cromosomas. A esa cantidad de ADN, estructurada en cromosomas, se le llamó genoma, y se define como el conjunto de genes de una especie determinada. Indudablemente, nos encontramos ante un nuevo concepto que fue preciso definir. He dicho conjunto “de genes”, es decir, de responsables de funciones. Quiero recordar que consideramos al gen como el responsable de una función biológica, pero sin especificar cómo se lleva a cabo dicha función. Por ejemplo, nuestro “gen del grupo sanguíneo”, sin especificar de qué grupo sanguíneo se habla. O gen “del rH” sin especificar si éste es positivo a negativo. Conviene que recordemos esto: que el gen es responsable de una función, y está codificado en el ADN.

Todos, el mismo genoma

De este modo, definidas las funciones vitales de una especie (regidas por genes), todos los miembros de esa especie tienen el mismo genoma, que es ese conjunto de genes. La empresa de secuenciar el ADN humano se inició muy avanzado el siglo XX y aparecieron no pocas controversias relativas a patentes, posible curaciones casi milagrosas, implicaciones morales y otros temas que dejaban muy abajo la ciencia ficción. Cuando se tuvo secuenciada la totalidad del ADN humano, hubo que estudiarlo. 

Se realizó introduciendo dicha secuencia en ordenadores y aplicando programas complejos, previamente preparados. Como se conocía le secuencia de origen de cada gen, fue posible calcular el número de ellos contenido en nuestro genoma: unos 25000. También apareció un ADN no vinculado con inicios de gen, de identidad desconocida y al que, de modo arrogante se le calificó como “basura” sin que a los usuarios de tal adjetivo se les asomase un arrebol vergonzoso al pronunciarlo. Hubiese sido más certero (y humilde) hablar de un ADN de función actualmente desconocida y del que, con las técnicas de que se disponía, resultaba imposible abordar su estudio. Hoy se van conociendo sus funciones.

Cada uno, su genotipo, 
todos el mismo genoma

Ya tenemos definido lo que constituye un genoma. Es la cantidad de ADN que va en un gameto y contiene todos los genes de una especie. Todos los miembros de una especie poseen el mismo genoma.

Pero los genes tienen diferentes maneras de actuar, alternativas funcionales a las que llamamos alelos. En cada individuo, los genes pueden estar presentes de diversas maneras. Los genes que determinan la textura del pelo pueden hacer que sea liso, ondulado, rizado, etc. Lo mismo ocurre con múltiples variantes morfológicas o bioquímicas, todas ellas hereditarias y regidas por alelos diferentes. Es decir, aunque los genes son los mismos en todos los individuos de una especie, cada individuo puede poseer una constitución alélica propia. Esa constitución alélica es lo que conocemos como genotipo y sólo en casos de reproducción asexual, no hay dos individuos con el mismo genotipo.

Mediante cálculos aritméticos sencillos es posible determinar el número de genotipos diferentes que puede haber en nuestra especie. Con toda seguridad, aún no ha habido el suficiente número de humanos como para que apareciesen todos los genotipos posibles. Cuando Aristóteles dijo que no había dos personas iguales, estaba diciendo algo cierto, aunque la genética tardó 25 siglos en apoyar su comentario.

viernes, 8 de septiembre de 2017

Mis profesores, mis maestros

Mis profesores me transmitieron sus conocimientos por dos vías. Una de ellas, fue el cúmulo de conocimientos que se consideraban necesarios para superar el curso del que se tratase. La otra vía, fue todo cuanto se les escapó en comentarios y actitudes que mostraban ante hechos inesperados. Así, nos dejaron ver algo que no se encuentra en libros y que es consecuencia de un modo de ser. Se configura a los largo de una trayectoria marcada por una clara vocación y una dedicación profesional.


Mi orla
Hace más de cincuenta años que terminé mi carrera. Más de cincuenta, sí. La mayor parte de lo estudiado entonces hoy está científicamente superado, pues han aparecido nuevas teorías, métodos de análisis y datos nuevos con los que enjuiciar e interpretar lo conocido. Pero sigo teniendo una gran deuda con todos mis profesores, pues me transmitieron un modo de ser, actuar y pensar como biólogo. No me lo enseñaron con sus clases, más bien fue con sus actitudes cotidianas. Tampoco sé si lo hicieron de modo premeditado, más bien creo que fue una actuación buena, sincera y natural en ellos. Trabajaban, daban sus clases, nos explicaban las cosas y siempre estaban disponibles para nosotros. Todo eso en conjunto generó un ambiente académico muy agradable, que nos permitió vivir entre maestros casi sin darnos cuenta.

Mi foto para el
Carnet de Facultad
De ese modo nos fuimos acercando al conocimiento biológico. Un conocimiento que nos llegó regulado y estructurado mediante el correspondiente plan de estudios. Se nos puso al día en todo lo concerniente a la biología en aquel momento (se estaba dilucidando el código genético y se conocían los ARN, aunque se desconocían sus funciones concretas, por ejemplo). Cuando fueron llegando las novedades científicas, estábamos preparados para interpretarlas e incorporarlas a nuestros conocimientos. Con el tiempo, casi todo lo de entonces está, digamos, superado y actualizado.

En este patio me sentí en mi casa

¿Qué quedan de mis conocimientos de entonces? Como digo, los tengo actualizados y los anteriores, a buen recaudo en los archivos de la memoria. En rigor, he de decir que todo está superado, pero a mis profesores les sigo debiendo el rigor, el orden, el criterio. Incluso, claro que sí, les debo mi actitud ante las novedades científicas que van apareciendo. Hay quienes ante el sonsonete de que “está científicamente demostrado”, están dispuestos a admitir lo que sea sin preocuparse en contrastar el contenido causante del comentario. Muchas veces, tal frase no es más que una superflua muletilla coloquial sin fundamento ninguno.

Creo que los que hemos adquirido nuestros conocimientos gracias a profesores competentes, nunca hemos sido esclavos de la ciencia ni la hemos considerado como una explicación definitiva de nada. Para mí, hay muy pocas cosas inamovibles. Algunos teoremas geométricos (“en un triángulo rectángulo, un cateto es media proporcional entre la hipotenusa…”), las tablas de aritmética (7 x 3 = 21, etc.) y pocas cosas más. Incluso la RAE admite hoy conjugaciones alternativas. Lo demás, está muy bien conocerlo y cuanto más, mejor, pero desde una postura crítica, sin rendidas entregas conceptuales.

Esta galería la crucé mil veces
para cambiar de aula
Es en este punto donde choco con amigos, que creen ciegamente que la ciencia es un cuerpo de conocimientos que interpretan el entorno. Ahí yo introduzco un pequeño matiz y digo que es “un cuerpo de conocimientos que intenta interpretar el entorno”. Para mi modo de ver, es ese intento el causante de que la ciencia esté en constante revisión de los conocimientos previamente adquiridos.

En un momento concreto, la ciencia puede aparecer como un cúmulo compacto de conocimientos. Siempre con sus dudas y sus preguntas sin resolver, pero un cúmulo compacto. Cuando aparece una nueva técnica de experimentación, se someten a esa técnica los conocimientos previos, que pueden resultar reforzados, o bien rechazados como erróneos. Si ocurre esto,  de nuevo es preciso volver a estudiar para explicar aquello cuya explicación previa ha sido rechazada a raíz de los nuevos descubrimientos. Las nuevas técnicas de estudio afianzan los anteriores conocimientos o los invalidan, abriendo, en este segundo caso, nuevas vías de estudio para explicar unos hechos que siguen requiriendo ser interpretados.

La torre y su reloj eran una
referencia desde lejos
No son pocas las personas a quienes esta situación de constante incertidumbre, de carencia de afirmaciones rotundas y definitivas, les produce una situación de angustia, de incertidumbre y duda. Se sienten defraudadas por la ciencia. Tal vez creyeron encontrar en ella un campo de tranquilidad conceptual en el que, una vez sabido algo, ya no era preciso revisarlo más. En genética, muchos avances en el conocimiento se produjeron por querer encontrar explicación a lo que resultaba inexplicable cuando se aplicaban los conocimientos previos.

En este orden de cosas, el avance de una ciencia se realiza por dos vías diferentes y complementarias. O bien reforzando los criterios anteriores, que van quedando afianzados al resistir nuevos análisis, o bien añadiendo nuevos conocimientos que será preciso ir consolidando. Tarea nunca falta. Pero nunca la ciencia es una religión, ni debe tomarse como tal. La ciencia no dispone de dogmas, intenta explicar todo y, en ese intento, va caminando afianzando su fondo de conocimientos. Quien considera a la ciencia como una substituta de una religión, tal vez desconoce la naturaleza de ambas.

Esto es lo que pienso hoy, después de bastantes años de ejercicio de mi profesión, pero no reniego de aquel muchacho que salió de la Universidad de Barcelona recién licenciado en Ciencias Biológicas. Ya tenía mi forma de pensar. Muchas actitudes mías actuales se las debo a mis profesores de entonces, a los que encontraron una mente inexperta, la mía, y le fueron inculcando modos de actuar y de pensar. Rigor y orden, sí. Pero también, y cómo lo agradezco, espíritu crítico ante las novedades científicas que fueron apareciendo.
+ + +

La foto de la orla se la debo a A. Massanell, amiga y compañera de Promoción.

Las fotos de la Universidad de Barcelona las he obtenido del fondo fotográfico de Google.

viernes, 1 de septiembre de 2017

Dispersión

Estamos ante una importante fase vital para los vegetales, la dispersión de semillas. La formación de la generación siguiente, pero también la búsqueda de nuevos hábitats, la modificación, aunque ligera, del área de distribución. Todo eso está encerrado en ese proceso.

Fruto de Medicago
Recuerdo que de niño iba a jugar a un campo cercano a mi casa. En verano, volvía a casa con bolas espinosas pegadas a mis calcetines. Las bolas tenían la apariencia de ser vegetales, estar secas y eran del tamaño aproximado de un garbanzo. Muchos años más tarde, estudiando Ciencias Biológicas en la Universidad de Barcelona, me reencontré con esas bolas, pero entonces ya sabía yo que eran el fruto de un género de la familia de las Papilonáceas llamado Medicago. Aquel fruto con espinas estaba adaptado para adherirse a la piel peluda de cualquier mamífero que, luego, al notar algo molesto debido a las espinas, se lo quitaría dejándolo caer al suelo. De este modo contribuía a la dispersión de las semillas que llevaba el fruto. Las diferentes especies del género Medicago tienen el fruto en forma helicoidal, lo que le sirve para ser transportado por el viento.

Vilanos de diente de león
dispuestos a desprenderse

El viento es un agente importante en la dispersión de las semillas. ¿Quién de nosotros no ha jugado soplando sobre los vilanos del diente de león, para verlos esparcirse? Son tan puntuales en su aparición que en una recordada película, Amarcord, se mide el paso de un año por el período de tiempo que media entre una invasión de vilanos y la siguiente. Se dispersan a lo loco, con generosidad suelo decir, pues cuantas más semillas se dispersen, mayor será la probabilidad de que alguna caiga en terreno apropiado y que dé origen a una nueva planta.

Los vilanos se desprenden
El viento, sí, el gran dispersador. Con numerosas estructuras adaptadas para que las semillas sean llevadas por él, como los vilanos, de los que he hablado, pero también las sámaras, esas aletas que hacen que las semillas de arces semejen hélices con las que juega el viento, o las de olmos, rodeadas casi por completo de su aleta voladora.

Sámaras de olmo
A veces hay agentes inesperados, como es el caso de los arrendajos, que entierran bellotas como reservas que serán comidan en tiempos de escasez. Lo malo para él (y bueno para los robles), es que olvida muchos de los lugares de escondrijo de sus bellotas que, pasado el tiempo y cumplidas las condiciones biológicas, llegan a germinar. Los robles mantienen su presencia gracias a un modo peculiar de dispersión.
Hace unos cinco años vi en los borde de carreteras secundarias unas plantas de porte leñoso, de unos 70 cm. de altura y con flor duradera de color amarillo. Me pareció una especie de arrayán y le pregunté a un colega botánico. Me dio la razón y me comentó que era una especie que estaba entrando en Galicia por los bordes de carreteras, transportadas por coches. No es que las semillas se suban al coche, no. Pero de los cientos de semilla que forma cada planta, alguna puede engancharse al vehículo de modo inestable. Tan inestable, que al poco trecho se desprende y cae al suelo. La semilla ha sido transportada. Hace años veía menos ejemplares de este arrayán, ahora veo más. Parece que se dispersa bien. También las vías del tren son buenos caminos para la dispersión de semillas y, por tanto, para movimiento de plantas.

Cortaderia, invasora en Galicia

Hace unos cuarenta años, se inauguró el primer tramo de autopista en Galicia. Recorría 66 km entre A Coruña y Santiago de Compostela. Como mediana entre unas y otras vías se plantaron ejemplares de Cortaderia, aunque se levantaron voces alertando de la posibilidad de que se transformase en una planta invasora. Con los años, la autopista fue creciendo, las plantas se eliminaron del lugar en el que fueron plantadas, pero hoy actúan como invasoras y se extienden libremente a lo largo de muchos kilómetros y no sólo por la autopista, también por la autovía y demás carreteras próximas a ellas. Cientos de kilómetros. Tal vez los vilanos de estas plantas, que formarán por miles cada año, serán arrastrados hacia los camiones debido al efecto de succión generado por sus volúmenes y velocidades. Luego, y por diversas causas, pueden caer y germinar  en cualquier lugar, promoviendo de este modo la dispersión de las semillas.
Hoy, los céspedes de los campos de fútbol son gestionados y cuidados por especialistas. Antes, había en ellos problemas de drenaje, necesidad de mucho césped de crecimiento rápido y otros requerimientos. Hoy, en los campos de fútbol lucen céspedes muy hermosos antes de comenzar los partidos. Las partes cercanas a las porterías suelen ser las más castigadas, pero todo está reparado una semana más tarde.
Antes de la época de esos cuidados, siempre costosos, los campos de fútbol eran prados en los que crecían las hierbas. Quiero suponer que cuando mis calcetines se llenaban de frutos de Medicago, también lo hacían los de los futbolistas. La verdad es que había una gran uniformidad en la flora de esos campos, pues las botas de los futbolistas actuaban como eficaces agentes de dispersión, llevando semillas de un sitio para otro.

Dispersando...
En estos días estoy en Santiago. Cada día llegan cientos de peregrinos que vienen recorriendo el Camino. He salido de paseo y he visto una gran disparidad de ellos que llenaban las calles de mi ciudad. De un tipo u otro, casi todos iban calzados con botas. Y he pensado en qué modo ocasional de dispersión están llevando a cabo, qué tipos de semillas llevarán en sus botas. Tal vez recopilando las semillas presentes en ellas fuese posible realizar algún estudio sobre la dispersión de semillas en el Camino de Santiago, realizada por los mismos caminantes. Yo ya no estoy en condiciones de emprender ese estudio, pero le brindo la idea a quien quiera ponerla en práctica.

En el capítulo XII del Origen de las especies, Darwin trata con detenimiento el tema de la dispersión, en animales y vegetales. 

viernes, 25 de agosto de 2017

Ur ramillete de flores

Tuve un profesor a quien quise, respeté y admiré. Por diversos motivos, que no vienen al caso, me inspiró esos sentimientos y hoy, pasado más de medio siglo, sigo recordándole de ese modo. Me dio clase de Botánica, y mis compañeros de promoción ya saben de quién hablo.
A veces, al hablar con nosotros se le escapaban comentarios llenos de sabiduría. Voy a reseñar uno que nos hizo en cierta ocasión y que siempre me ha servido de pauta.


Ramo de flores de invernadero

Estábamos de viaje de estudios por las afueras de Barcelona. Alguien cortó un manojo de flores del campo para hacerse un ramillete con ellas. El Dr. Bolós, nuestro Profesor, le pidió que nunca más repitiese tal acción. Si se arrancaba una planta, con su flor, para nuestro estudio, bien estaba y era comprensible, nos dijo. Pero arrancarla para un adorno efímero, era una agresión muy intensa contra la planta. Le había costado mucho superar la actuación de la selección natural antes de alcanzar el estado reproductivo: superar la dispersión de la semilla que la generó, crecer y salvarse de la acción de los herbívoros, llegar a florecer y ahora, ya a punto de formar semillas para dar lugar a la siguiente generación, sufrir la acción despreocupada de alguien que la troncha solo por adornarse un rato. Ya no formará semillas, ni transmitirá sus genes a la generación siguiente ni contribuirá a formarla.


Flores naturales

Toda una historia de superaciones frente a la selección natural se rompe por un capricho individual. Hablo de flores silvestres, de las nacidas en el campo, de las llamadas florecillas por algunos con cierto aire bucólico, que las consideran como lunares de un tapiz herbáceo. Las flores de invernadero no cuentan en esto, ya han nacido para adornar y tener vida efímera. Incluso muchas han sido preparadas para ser estériles. Hablo de las flores del campo, las encargadas de formar semillas para con ellas dar lugar a la siguiente generación evitando que se extinga la población de la que forman parte.


Flores naturales

Porque las flores son los órganos reproductores de las plantas. Toda su diversidad morfológica está relacionada con sus múltiples modos de ser fecundadas y de formar las semillas. Aunque en general, es algo que no preocupa a mucha gente. Corta flores como entretenimiento, como regalo que se hacen a sí mismos, sin preocuparse del efecto biológico que pueda tener tal acción.

La verdad, qué dolor, es que somos destructores de seres vivos. No me refiero a aquellos que forman parte de nuestra dieta, son componentes de nuestra biología. Me refiero a los que matamos por diversión, por odio, por sentimientos adversos, por tradición o por despreocupación. Somos una especie que ha generado extinciones desde nuestra aparición.

Flores naturales
En el monte, me gusta ver los ciclos anuales de las plantas con flor. Las primeras que nacen, cuando el invierno llega a su fin, son las procedentes de bulbos, los narcisos. Luego aparecen algunas flores de corola pequeña como primaveras, verónicas, arenarias, violetas y otras. Todo esto ocurre en primavera muy temprana, cuando todavía los árboles no tienen muy formadas las hojas y el sol incide directamente en el suelo. 

Flores naturales en bordes
de caminos
Mas tarde, cuando el bosque esté cubierto por el tupido manto de hojas de árboles, aparecerán las flores de bordes de caminos, en lugares a los que llega el sol. Todo sigue su ritmo, todo pautado desde final del invierno hasta ahora. Aún deben de aparecer las inflorescencias masculinas de los castaños, cubriéndolos por completo con un velo blanco, como si fuesen telarañas.

Flores de invernadero
Los estudiosos ya van encajando toda esta disparidad en un todo muy estructurado, muy difícil de interpretar por completo porque desconocemos gran parte de su mecánica, pero ya vamos entendiéndolo.

Adorno floral
Mientras vamos dilucidando estas formas de vida de las especies en el monte, las flores intentarán formar semillas, que se dispersarán de modo adecuando y al año siguiente volverán a haber esas flores donde las hubo este año.

Tampoco arrancar una flor significa una gran agresión al medio natural. Ni un rebaño de vacas pastando en un prado en plena época de floración es capaz de provocar extinciones de plantas con flor en ese prado. Ni siquiera la visita de los habitantes de un pueblo con cestos y canastas porque “hay” que coger flores para la procesión de Corpus, será capaz de provocar la extinción de alguna especie. No es eso, pero hay una rotunda falta de respeto a nuestro medio natural, al que deberíamos cuidar y proteger.

Frutal, otra historia en otras pautas.
Es increíble la robustez de la naturaleza en el momento de superar las agresiones que podemos infringirle. Vivimos agrediendo. Desde nuestro comienzo hemos sido una especie provocadora de extinciones y, por lo que vemos, no creo que aprendamos. ¿Aprender a qué? Simplemente, a convivir con especies que llevan más tiempo que nosotros en este planeta. Aunque fuesen recién llegadas. Hay sitio para todos.

Cuando paseo por el monte, me gusta admirar la belleza y la diversidad en flores. Para eso no necesito arrancarlas, mejor que vivan su vida, formando semillas y contribuyendo al mantenimiento de la población a la que pertenecen, dando lugar a la generación siguiente, la del año próximo.

viernes, 18 de agosto de 2017

Paseando por el monte

Mis grandes reflexiones sobre biología suelen surgir del mundo vegetal. Tengo muy claro que es así, y la verdad es que me alegra que ese mundo tan asequible, para quien quiera verlo, sea el que me inspire la mayor parte de lo que digo en este blog. Normalmente, cuando paseo, silencioso, miro y reflexiono. O charlo con quien venga conmigo y la mayor parte de las veces terminamos hablando, cómo no, de lo que nos rodea. De biología vegetal.



Estamos en un momento del año en el que las plantas con flor están en su esplendor, así como los insectos. Cito juntos ambos grupos porque, biológicamente, se necesitan unos a otros. Las plantas necesitan a los insectos para polinizarse entre ellas (hay muchos casos de flores autoestériles aunque sean hermafroditas), y los insectos necesitan a las plantas para alimentarse. Así de sencillo.


Como ofrecidas al viento


En el ciclo anual, las primeras flores que aparecen, siempre cuando aún están aquí los fríos de febrero, son las de frutales. Y se abren aunque haga frío, lo cual siempre asombra a los mismos (“con el frío que hace, ya hay flores…”), pues no saben que para florecer, las plantas no obedecen a las temperaturas y sí a los fotoperíodos. Es a mediados de invierno cuando ya vemos las primeras flores, entre ellas las camelias.

La verdad es que en esos tiempos, con esas temperaturas, pocos insectos hay, aunque pronto los habrá. Si las flores que se abren entonces dependiesen de ellos, es posible que se marchitasen sin haber sido polinizadas. Pero hay polinización, aunque no haya insectos. En esos días fríos, el viento es el gran polinizador. Un polinizador nada específico, pero eficaz.

El viento arrastrará ese polen

Las corolas de las flores abiertas son grandes, amplias, con los estambres largos y al descubierto. Generan mucho polen, pues solo el azar determinará que caigan en los lugares apropiados. Esta gran cantidad de polen es capaz de originar alergias primaverales. Muchos frutales tienen este tipo de floración y polinización: almendros, ciruelos, cerezos, naranjos y un largo etcétera, a veces tienen épocas efímeras de floración, pero alegran nuestra vista con su belleza y la noticia, implícita, de que el invierno termina y el buen tiempo está en puertas.

Muchas frutas vivirán un lento y largo progreso antes de estar maduras y listas para ser comidas. Necesitan del calor del verano (ahora sí necesitan calor) para que en su interior se realicen las reacciones precisas que terminan produciendo esos sabores tan peculiares. Un proceso largo, lento y sensible que conocemos como maduración.

Más polen para el viento

Tal vez, no recuerdo bien, las plantas polinizadas por el viento son las más primitivas evolutivamente hablando. Es un tipo de polinización que lleva mucho gasto energético, pues cada grano de polen es portador de un genoma completo y sintetizarlo requiere mucha energía, claro que peor es la extinción.

Cuando, en épocas geológicas posteriores, aparecieron insectos capaces de polinizar, las plantas pudieron ahorrar la formación de tanto polen. Ahora, tienen que producir néctar y un olor especial para atraer a sus polinizadores. Hay muchos casos de formaciones complejas que nos indican relaciones intensas entre flores y polinizadores. Son bonitos casos de coevolución, un proceso en el que un factor actúa como seleccionador del otro, dando como resultado que evolucionan conjuntamente y se van adaptando cada vez de modo más intenso uno al otro.

Un dúo frecuente

Si somos asiduos paseantes del monte, estamos acostumbrados a ver abejas rodeando Dedaleras u otras flores, pero hay relaciones muy interesantes entre algún tipo de flor y su polinizador. A veces estas relaciones son muy específicas, en el sentido de que una flor concreta es polinizada por un solo insecto. Una relación buena sin competencia, pero con una dependencia peligrosa, pues si falta uno de los dos, el otro también peligra. 

Hay todo un mundo que nos puede resultar extraño, desconocido. Es el que rodea los procesos de floración y su posible sincronía con el nacimiento de los polinizadores. La polinización y sus medios, pues puede ser el viento el que poliniza, o los insectos o tal vez son otros agentes. Un mundo que nos resulta extraño, ajeno, es el definido por procesos de maduración y la necesaria dispersión de semillas. Se juega mucho el reino vegetal en todos estos procesos, y puesto que son importantes para los vegetales, son importantes para todos. Repito una idea que ya he expuesto aquí en otras ocasiones. Los vegetales podrían vivir sin nosotros, pero nosotros necesitamos totalmente de ellos. Recordemos el ciclo de la energía.

Las camelias silvestres tienen
los estambres al aire

Existe una recóndita armonía en el mundo natural. Estudiarlo abre los ojos a un sinfín de sorpresas y maravillas. Conocer ese mundo nos coloca en nuestro sitio, lejos de la época en que nos creímos Reyes de la Creación. Somos una especie más y, por si fuera poco, la única destructiva. Eso es lo que más me duele, nuestro total desconocimiento de unos pocos principios que rigen nuestro entorno. Los planes actuales de estudio parecen no estar encaminados a que los estudiantes de hoy, gestores del mañana, conozcan el medio en el que vivimos y desarrollamos nuestras actividades. Hoy, muchos niños conocen el nombre científico de Dinosaurios, y los repiten ante las sonrisas bobaliconas de padres y abuelos. Yo me pregunto paras qué les sirve saberlo. Pero esos mismos niños desconocen el nombre de cinco animales o cinco árboles propios de la fauna o de la flora de su localidad. Y no sólo ignoran sus nombres, tampoco los reconocen si se les pone ante ellos. Para decir esto, me baso en un estudio realizado en diferentes países europeos y americanos.
Es lo que hay.

Sus semillas no pueden atascar el tubo
digestivo del ave portadora

Al fin y al cabo, un plan de estudios es una herramienta con la que se pretende que los estudiantes tengan una formación concreta. Me gustaría conocer esa finalidad en cada caso.

Mientras, en botánica siguen habiendo detalles, muchos detalles que descubrir. Decimos que muchas aves dispersan las semillas, pues comen los frutos, generalmente bayas, y en sus excrementos las expulsan sin haberlas digerido. Todo eso es cierto, pero hay una condición estructural: las semillas deben caber por el tubo digestivo del ave. De no ser así, se podrían producir trastornos intestinales e incluso la muerte del ave. Por suerte, cada ave sabe bien qué tipo de fruto puede comer. Los aprendizajes en la naturaleza son rotundos.

Los únicos que no aprendemos somos nosotros.

viernes, 11 de agosto de 2017

Variabilidad génica 2

En un artículo anterior comenté la necesidad de variabilidad en las poblaciones como un requisito para alejar el peligro de su extinción. En general, en todas las poblaciones existe polimorfismo en mayor o menor grado. No obstante, podemos definir las especies naturales, animales o vegetales, por características morfológicas muy concretas, que inducen a pensar que en ellas no hay polimorfismo. Sabemos que las amapolas son rojas, las violetas dan nombre a un color, los jilgueros tienen forma y color concretos, como los mirlos o los arrendajos. ¿Qué ocurre en estos casos? ¿Cuál es la explicación a esta aparente contradicción? 

Darwin, en su obra El origen de las especies, nos comenta que la domesticación crea variabilidad. Hoy lo diríamos de otro modo, pero en la época en la que el libro fue escrito, aún debían descubrirse muchos hechos biológicos para comentar esa realidad con mayor rigor. Hoy sabemos que nuestra información genética está contenida en los cromosomas, y que heredamos dos juegos de ellos, procedentes de cada uno de nuestros progenitores. Tenemos como dos juegos repetidos de cromosomas. De cromosomas y de su contenido, de sus genes. De cada gen tenemos dos copias, uno de procedencia materna y el otro, paterna. Entre estos alelos se establecen las consiguientes relaciones de dominancia, recesividad o de heterosis.

Oculta en esa uniformidad hay gran variabilidad

En la naturaleza, los seres vivos manifiestan el aspecto, el fenotipo, adaptado al ambiente en que viven. La coloración, la morfología, la estacionalidad y muchas otras variables, están tremendamente fijadas por la selección natural. Por ejemplo, los insectos polinizadores se orientan por la morfología y el color de sus flores, de modo que cualquier modificación, por pequeña que sea, queda sin polinizar ni, por tanto, producir semillas. Otro tanto ocurre con animales y sus posibles modificaciones de morfología o color. Para los animales, la coloración es básica para poderse esconder de sus predadores. Los aspectos, que llamamos “fenotipos” (del griego, aspecto mostrado) presentes en la naturaleza, reciben el calificativo de salvaje, cuando se refieren a animales, y silvestre, en el caso de vegetales.

Estas morfologías son altamente fijas, no existe posibilidad adaptativa de variación en las condiciones ambientales del momento, pero eso no quiere decir que tales condiciones puedan cambiar y, por tanto, esos fenotipos dejen de ser adaptativos. Pienso, por ejemplo, en mamíferos de ciclo biológico corto, presentes en montañas con climas fríos. Si en invierno hay nieve, la coloración más adaptativa será la albina, mientras que en verano será otra, de color castaño En ambos casos se favorece el camuflaje de los animales frente a predadores. Aunque también puede ocurrir que el pequeño mamífero tenga letargo invernal, supliéndose esa necesidad de coloración invernal.

Hay variabilidad oculta

De todos modos, no he contestado nada acerca del lugar en que se guarda la variabilidad necesaria para afrontar los posibles cambios ambientales. Esa variabilidad está presente en la población en forma de alelos recesivos y, por tanto, ocultas por los correspondientes alelos dominantes que determinan los fenotipos salvaje o silvestre, según los casos. En cada generación nacen individuos, pocos, con esos fenotipos, pero la selección natural los elimina, por no estar adaptados a las condiciones del momento. En la naturaleza hay alelos que causan la muerte de sus portadores cuando están en homocigosis, y son componentes de lo conocido como lastre genético.

Pero si cambian las condiciones ambientales, aunque sea ligeramente, los fenotipos que antes estuvieron rechazados por la selección natural, ahora pueden resultar beneficiados. Este cambio puede comportar una cierta mortandad en la población, pero se mantiene y sobrevive. A esta variabilidad, y por lo explicado, se le conoce también como “preadaptación” en el sentido de que, debido a ella, las poblaciones están preadaptadas a cambios que puedan ocurrir. Me refiero a cambios normales en las condiciones ambientales. Fotoperíodo, humedad, temperatura, disponibilidad de recursos y así. Un cambio drástico puede generar un desastre ecológico. En este sentido, no son pocos quienes piensan que el llamado “cambio climático” en la actualidad, tiene en las poblaciones una incidencia negativa mayor por la velocidad con la que ocurre que por su misma magnitud. Esa velicidad puede incidir de modo negativo en la capacidad de adaptación por parte de las poblaciones.

Por cuanto llevo dicho, está claro que el tamaño de población es un factor importante. No es lo mismo una con 20 individuos que otra con 200. La cantidad de variabilidad encubierta que puede soportar cada una es muy diferente. Y conviene no olvidar que esa variabilidad es un componente de su adaptación a posibles y futuros cambios ambientales. Realmente no es “un componente”, es “el componente”, el único.

Diversidad de colores.
Cultivo artificial.

No obstante, he escrito de modo intencionado la palabra “soportar” en el párrafo anterior. Mucha de esta deseable variabilidad presente en una población, mientras no ocurran cambios puede ser componente de su lastre genético. La población, no lo olvidemos, precisa vivir y reproducirse para mantenerse. Un cierto nivel de mortalidad (debido al lastre), es asumible para ella, pero mucha mortalidad también es perjudicial. Por esta nueva razón, un tamaño grande de población es mejor que un tamaño reducido.

Todo esto es válido para las poblaciones naturales, cuando los individuos están sometidos a la acción de la selección natural. En cautividad, bajo los afanes de los cuidadores, la selección natural desaparece y en es ese momento cuando se descubre toda la variabilidad encubierta que poseen las poblaciones, de la que nos habla Darwin en el primer capítulo de su obra El origen de las especies.


viernes, 4 de agosto de 2017

Variabilidad génica 1

Esta entrada, con variantes, la publiqué en noviembre de 2015. La traigo de nuevo aquí, pues quiero recordar lo que dije entonces, y que mantengo hoy.
Cuando digo “génico”, me refiero a lo relativo a los genes, su función, su frecuencia, su actividad. “Genético” lo utilizo para referirme a estructuras biológicamente hereditarias. Su base material es el ADN, que constituye los genes, aunque también está presente en otras estructuras celulares, como mitocondrias o plastos.

Desde una consideración biológica, no es lo mismo una población de trescientos individuos que una de quince, por ejemplo. A veces, cuesta trabajo hacer comprender que el tamaño de población es importante en las poblaciones naturales, cuando sólo dependen de su propia vitalidad para mantenerse a lo largo de las generaciones, y teniendo que superar la adversidad que representa para ellas la selección natural, con todos sus componentes.

Efecto de variabilidad génica

Hay algo que los biólogos tenemos muy claro. Aunque la selección natural actúa sobre el individuo, quien manifiesta sus efectos es la población a la que pertenece. En biología, muchos procesos son de ese modo, siendo sobre la población donde inciden los resultados de muchos procesos vividos por sus componentes. Por ejemplo, los individuos no evolucionan, lo hacen las poblaciones a las que pertenecen.
Volviendo al inicio, podemos preguntarnos ¿por qué es importante el tamaño de la población? Sencillamente, por la posibilidad de poseer mayor cantidad de variabilidad génica, que viene a ser como un seguro de permanencia. Pero esa variabilidad que una población puede poseer, está en relación directa con el número de individuos que la componen.

Variabilidad génica en color de ojos
de la mosca de la fruta

¿Qué entendemos por variabilidad? Vamos a ver si soy capaz de explicarlo en pocas palabras. Todos sabemos que los genes determinan los caracteres hereditarios, que suelen ser morfológicos o funcionales. Por ejemplo, color de ojos o grupo sanguíneo. En general, cada uno de nosotros tenemos dos copias de cada gen, uno procedente de nuestro padre y el otro de nuestra madre.
Pero el hecho de que un gen concreto determine una función también concreta, no ha de tomarse en el sentido de que siempre se determina del mismo tipo. Conocemos la diversidad de coloración de ojos. El gen determina el color, pero existen diversas alternativas funcionales y hereditarias que determinan diferentes colores. A cada alternativa le llamamos alelo, (del griego, "otro"). En un principio se le llamó "alelomorfo", (también del griego, "otra forma"), pero hoy se le llama simplemente alelo. Del gen con varios alelos se dice que es polimórfico (del griego, "muchas formas"), y la situación poblacional se conoce como polimorfismo.

Más consecuencias de variabilidad génica

Si hablamos de nuestros grupos sanguíneos, sabemos que entre los humanos existen, entre otros, cuatro grupos sanguíneos: A, B, AB y 0. Están determinados por diferentes alelos de un mismo gen. En eso consiste la variabilidad génica, en que para cada carácter (grupo sanguíneo en este caso, o color de ojos), existan diferentes posibilidades de manifestarse, que corresponden a pequeñas diferencias funcionales. Aunque cada individuo tiene un solo grupo sanguíneo, o una tonalidad concreta de ojos, es la población la que posee varios alelos determinantes de esos tipos, que están presentes en diferentes individuos pertenecientes a ella.
A esta diversidad responsable de muchos caracteres, es a lo que se llama variabilidad génica, y es un carácter propio de la población, no del individuo. Representa una gran riqueza biológica, puesto que cada variable puede proporcionar a su poseedor diferente adecuación frente a ambientes ligeramente diversos. Es decir, las poblaciones con mucha variabilidad pueden estar como mejor preparadas para posibles, e inciertos, cambios ambientales, pues no sería raro que alguna combinación de sus caracteres resultase adecuada para vivir en nuevos ambientes generados por posibles cambios.
En la naturaleza hay mucha uniformidad morfológica.
La variabilidad génica está encubierta

Todo esto que comento no puede ocurrir en poblaciones con quince individuos. Ni con treinta. La primera desventaja que posee una población que ha reducido su tamaño, es haber perdido variabilidad génica. Por lo dicho antes, si hay menos variabilidad génica, las posibilidades de supervivencia ante posibles cambios ambientales adversos serán menores.
Como dije, la variabilidad génica es una riqueza grande para una población. Es consecuencia de años, y generaciones, produciendo individuos, algunos de los cuales salen airosos de los efectos de la selección natural. Durante todas esas generaciones se han producido mutaciones que están presentes en la población, escondidas bajo el estado de alelos recesivos, pero que en algún momento, y debido a múltiples causas, pueden manifestarse ante la selección natural.

Pero para que aparezcan nuevas formas, que es el paso previo a la subsistencia de la población, ha sido preciso que antes hubiese existido variabilidad génica repartida en un amplio número de individuos componentes de la población.