Mostrando las entradas para la consulta tamaño de población ordenadas por fecha. Ordenar por relevancia Mostrar todas las entradas
Mostrando las entradas para la consulta tamaño de población ordenadas por fecha. Ordenar por relevancia Mostrar todas las entradas

viernes, 22 de septiembre de 2017

Genes inmigrantes


Vamos a echar unas cuentas. Supongamos una población natural de 100 mamíferos. Incluso, y ya es mucho suponer, pensemos que forman 50 parejas, es decir hay 50 machos y 50 hembras. Para ese tamaño censal de población, el tamaño eficaz es el máximo.

Vámonos a los orígenes de esos 100 individuos. Se han formado gracias a 200 gametos, 100 óvulos y 100 espermatozoides. Hay, por tanto, 200 copias de cada gen en esa población (salvo los ligados al sexo, de los que hay 150). Vamos a descartar la más que segura consanguinidad entre esos 100 mamíferos componentes de esta hipotética población.


Algunas poblaciones de aves son muy numerosas 

Si la tasa de mutación para cada gen viene a ser de un mutante nuevo por millón de gametos, podemos calcular que en estos 200 gametos hay pocas mutaciones nuevas y que, por tanto, será escasa la variabilidad génica que se pueda estar generando en sucesivas generaciones. 

Indudablemente, es en esa variabilidad donde está encerrada la posibilidad de adaptación ante posibles cambios que se produzcan, en las condiciones ambientales en las que se desarrollan las actividades de esta imaginaria población. Pero muchos saben que este tamaño de 100 individuos es una estima alta y que, normalmente, las poblaciones naturales de mamíferos suelen ser menos numerosas. 

Las poblaciones de mamíferos
son de menor tamaño
En estos casos de pequeñas poblaciones, podemos calcular que la mutación, aunque real, es un fenómeno escaso, casi ausente de ellas y, puesto que son la fuente principal de variabilidad génica, la única variabilidad que puede existir en esta población es la genotípica. Es decir, genotipos diferentes, siendo los genotipos las combinaciones de alelos disponibles. Pero los genotipos son efímeros en animales, sólo duran lo que dura un individuo, pues al formar gametos se disgregan. En vegetales, debido a su posibilidad de reproducción asexual, los genotipos pueden ser más duraderos. 

En poblaciones pequeñas, y una formada por 100 individuos lo es, existe un gran peligro de consanguinidad, con todo lo que esto lleva consigo de negativo. En poblaciones exiguas, no sólo es peligrosa la poca variabilidad génica, también es alarmante la alta tasa de consanguinidad que puede existir entre sus miembros. 

Poblaciones humanas pequeñas suelen
tener problemas genéticos
Existe otra fuente natural de variabilidad génica, y es la inmigración. Consiste en la llegada a una población de un individuo de la misma especie, pero procedente de una población alejada. Que venga o no para quedarse, es cosa de fábulas. Lo importante es que se cruce con individuos residentes de la población y deje descendencia con sus genes que, con toda probabilidad, no todos ellos serán iguales a los existentes en la población de acogida. 

La frecuencia de aparición de los alelos así llegados a esa población receptora es mucho más alta que la que podría esperarse si apareciesen en gametos. Además, la probabilidad de que el gameto portador del nuevo mutante alcanzase el estado adulto es muy remota, y en el caso del inmigrante, llega como adulto que ha superado la acción de la selección natural. Todo son ventajas, como vemos. 

En algunas tribus africanas, los muchachos
inmigrantes son muy bienvenidos
¿Quién es mejor inmigrante, un macho o una hembra? Hay estudios, no rigurosamente confirmados, que indican que los individuos foráneos poseen mayor éxito reproductor que los residentes, incluso en humanos. Pero una hembra de mamífero, debido a su modo de reproducción, está ocupada en la procreación durante un cierto tiempo, mientras que un macho puede reproducirse de modo más despreocupado, al no tener problemas de dedicación a la progenie. 

He comentado situaciones similares en humanos, cómo chicos y chicas adoptan modos y costumbres tendentes a romper situaciones consanguíneas. Hay situaciones históricas que nos hablan de mezclas de poblaciones originadas por migraciones, dando como resultado un enriquecimiento biológico en todos los sentidos. También se citan casos de tribus africanas en las que, cuando llega un muchacho procedente de otra tribu, se le premia eximiéndoles de los trabajos tribales durante un año. Este es un caso comparable al de los machos inmigrantes que he comentado. 

En la actualidad existen programas de renovación génica para poblaciones naturales en peligro. Se hacen al amparo de parques zoológicos y consisten en intercambios recíprocos de machos procedentes de las zonas geográficas afectadas. Esos machos se mantienen con hembras de las poblaciones receptoras durante un tiempo, pasado el cual, el macho se retorna a su población originaria pero ha dejado copias de sus genes en las poblaciones de las que procedían las hembras. Realmente, se ha copiado el efecto que podría haber tenido la inmigración de ese macho. Nacerán hijos suyos con alelos nuevos en las poblaciones receptoras, pero todos ellos serán medio hermanos. La consanguinidad previa no se elimina, pero al menos se conjura el peligro de poca variabilidad génica. 

Lo del tamaño de población es un problema en todos estos casos. Pocos individuos, aparte de ser parientes, no pueden presentar una amplia variabilidad genotípica. Esta variabilidad se refiere a los diversos genotipos que se pueden generar a partir de una variabilidad alélica determinada. El que existan mucha variabilidad genotípica es importante de cara a la selección natural, pues no todos los genotipos posibles tienen la misma capacidad adaptativa

Y de eso se trata en la supervivencia de una población, de que haya individuos portadores de genotipos con diversa capacidad adaptativa, de modo que la selección natural, pueda escoger entre ellos. La selección natural escoge, pero para eso es necesario que haya variabilidad donde escoger.

viernes, 11 de agosto de 2017

Variabilidad génica 2

En un artículo anterior comenté la necesidad de variabilidad en las poblaciones como un requisito para alejar el peligro de su extinción. En general, en todas las poblaciones existe polimorfismo en mayor o menor grado. No obstante, podemos definir las especies naturales, animales o vegetales, por características morfológicas muy concretas, que inducen a pensar que en ellas no hay polimorfismo. Sabemos que las amapolas son rojas, las violetas dan nombre a un color, los jilgueros tienen forma y color concretos, como los mirlos o los arrendajos. ¿Qué ocurre en estos casos? ¿Cuál es la explicación a esta aparente contradicción? 

Darwin, en su obra El origen de las especies, nos comenta que la domesticación crea variabilidad. Hoy lo diríamos de otro modo, pero en la época en la que el libro fue escrito, aún debían descubrirse muchos hechos biológicos para comentar esa realidad con mayor rigor. Hoy sabemos que nuestra información genética está contenida en los cromosomas, y que heredamos dos juegos de ellos, procedentes de cada uno de nuestros progenitores. Tenemos como dos juegos repetidos de cromosomas. De cromosomas y de su contenido, de sus genes. De cada gen tenemos dos copias, uno de procedencia materna y el otro, paterna. Entre estos alelos se establecen las consiguientes relaciones de dominancia, recesividad o de heterosis.

Oculta en esa uniformidad hay gran variabilidad

En la naturaleza, los seres vivos manifiestan el aspecto, el fenotipo, adaptado al ambiente en que viven. La coloración, la morfología, la estacionalidad y muchas otras variables, están tremendamente fijadas por la selección natural. Por ejemplo, los insectos polinizadores se orientan por la morfología y el color de sus flores, de modo que cualquier modificación, por pequeña que sea, queda sin polinizar ni, por tanto, producir semillas. Otro tanto ocurre con animales y sus posibles modificaciones de morfología o color. Para los animales, la coloración es básica para poderse esconder de sus predadores. Los aspectos, que llamamos “fenotipos” (del griego, aspecto mostrado) presentes en la naturaleza, reciben el calificativo de salvaje, cuando se refieren a animales, y silvestre, en el caso de vegetales.

Estas morfologías son altamente fijas, no existe posibilidad adaptativa de variación en las condiciones ambientales del momento, pero eso no quiere decir que tales condiciones puedan cambiar y, por tanto, esos fenotipos dejen de ser adaptativos. Pienso, por ejemplo, en mamíferos de ciclo biológico corto, presentes en montañas con climas fríos. Si en invierno hay nieve, la coloración más adaptativa será la albina, mientras que en verano será otra, de color castaño En ambos casos se favorece el camuflaje de los animales frente a predadores. Aunque también puede ocurrir que el pequeño mamífero tenga letargo invernal, supliéndose esa necesidad de coloración invernal.

Hay variabilidad oculta

De todos modos, no he contestado nada acerca del lugar en que se guarda la variabilidad necesaria para afrontar los posibles cambios ambientales. Esa variabilidad está presente en la población en forma de alelos recesivos y, por tanto, ocultas por los correspondientes alelos dominantes que determinan los fenotipos salvaje o silvestre, según los casos. En cada generación nacen individuos, pocos, con esos fenotipos, pero la selección natural los elimina, por no estar adaptados a las condiciones del momento. En la naturaleza hay alelos que causan la muerte de sus portadores cuando están en homocigosis, y son componentes de lo conocido como lastre genético.

Pero si cambian las condiciones ambientales, aunque sea ligeramente, los fenotipos que antes estuvieron rechazados por la selección natural, ahora pueden resultar beneficiados. Este cambio puede comportar una cierta mortandad en la población, pero se mantiene y sobrevive. A esta variabilidad, y por lo explicado, se le conoce también como “preadaptación” en el sentido de que, debido a ella, las poblaciones están preadaptadas a cambios que puedan ocurrir. Me refiero a cambios normales en las condiciones ambientales. Fotoperíodo, humedad, temperatura, disponibilidad de recursos y así. Un cambio drástico puede generar un desastre ecológico. En este sentido, no son pocos quienes piensan que el llamado “cambio climático” en la actualidad, tiene en las poblaciones una incidencia negativa mayor por la velocidad con la que ocurre que por su misma magnitud. Esa velicidad puede incidir de modo negativo en la capacidad de adaptación por parte de las poblaciones.

Por cuanto llevo dicho, está claro que el tamaño de población es un factor importante. No es lo mismo una con 20 individuos que otra con 200. La cantidad de variabilidad encubierta que puede soportar cada una es muy diferente. Y conviene no olvidar que esa variabilidad es un componente de su adaptación a posibles y futuros cambios ambientales. Realmente no es “un componente”, es “el componente”, el único.

Diversidad de colores.
Cultivo artificial.

No obstante, he escrito de modo intencionado la palabra “soportar” en el párrafo anterior. Mucha de esta deseable variabilidad presente en una población, mientras no ocurran cambios puede ser componente de su lastre genético. La población, no lo olvidemos, precisa vivir y reproducirse para mantenerse. Un cierto nivel de mortalidad (debido al lastre), es asumible para ella, pero mucha mortalidad también es perjudicial. Por esta nueva razón, un tamaño grande de población es mejor que un tamaño reducido.

Todo esto es válido para las poblaciones naturales, cuando los individuos están sometidos a la acción de la selección natural. En cautividad, bajo los afanes de los cuidadores, la selección natural desaparece y en es ese momento cuando se descubre toda la variabilidad encubierta que poseen las poblaciones, de la que nos habla Darwin en el primer capítulo de su obra El origen de las especies.


viernes, 4 de agosto de 2017

Variabilidad génica 1

Esta entrada, con variantes, la publiqué en noviembre de 2015. La traigo de nuevo aquí, pues quiero recordar lo que dije entonces, y que mantengo hoy.
Cuando digo “génico”, me refiero a lo relativo a los genes, su función, su frecuencia, su actividad. “Genético” lo utilizo para referirme a estructuras biológicamente hereditarias. Su base material es el ADN, que constituye los genes, aunque también está presente en otras estructuras celulares, como mitocondrias o plastos.

Desde una consideración biológica, no es lo mismo una población de trescientos individuos que una de quince, por ejemplo. A veces, cuesta trabajo hacer comprender que el tamaño de población es importante en las poblaciones naturales, cuando sólo dependen de su propia vitalidad para mantenerse a lo largo de las generaciones, y teniendo que superar la adversidad que representa para ellas la selección natural, con todos sus componentes.

Efecto de variabilidad génica

Hay algo que los biólogos tenemos muy claro. Aunque la selección natural actúa sobre el individuo, quien manifiesta sus efectos es la población a la que pertenece. En biología, muchos procesos son de ese modo, siendo sobre la población donde inciden los resultados de muchos procesos vividos por sus componentes. Por ejemplo, los individuos no evolucionan, lo hacen las poblaciones a las que pertenecen.
Volviendo al inicio, podemos preguntarnos ¿por qué es importante el tamaño de la población? Sencillamente, por la posibilidad de poseer mayor cantidad de variabilidad génica, que viene a ser como un seguro de permanencia. Pero esa variabilidad que una población puede poseer, está en relación directa con el número de individuos que la componen.

Variabilidad génica en color de ojos
de la mosca de la fruta

¿Qué entendemos por variabilidad? Vamos a ver si soy capaz de explicarlo en pocas palabras. Todos sabemos que los genes determinan los caracteres hereditarios, que suelen ser morfológicos o funcionales. Por ejemplo, color de ojos o grupo sanguíneo. En general, cada uno de nosotros tenemos dos copias de cada gen, uno procedente de nuestro padre y el otro de nuestra madre.
Pero el hecho de que un gen concreto determine una función también concreta, no ha de tomarse en el sentido de que siempre se determina del mismo tipo. Conocemos la diversidad de coloración de ojos. El gen determina el color, pero existen diversas alternativas funcionales y hereditarias que determinan diferentes colores. A cada alternativa le llamamos alelo, (del griego, "otro"). En un principio se le llamó "alelomorfo", (también del griego, "otra forma"), pero hoy se le llama simplemente alelo. Del gen con varios alelos se dice que es polimórfico (del griego, "muchas formas"), y la situación poblacional se conoce como polimorfismo.

Más consecuencias de variabilidad génica

Si hablamos de nuestros grupos sanguíneos, sabemos que entre los humanos existen, entre otros, cuatro grupos sanguíneos: A, B, AB y 0. Están determinados por diferentes alelos de un mismo gen. En eso consiste la variabilidad génica, en que para cada carácter (grupo sanguíneo en este caso, o color de ojos), existan diferentes posibilidades de manifestarse, que corresponden a pequeñas diferencias funcionales. Aunque cada individuo tiene un solo grupo sanguíneo, o una tonalidad concreta de ojos, es la población la que posee varios alelos determinantes de esos tipos, que están presentes en diferentes individuos pertenecientes a ella.
A esta diversidad responsable de muchos caracteres, es a lo que se llama variabilidad génica, y es un carácter propio de la población, no del individuo. Representa una gran riqueza biológica, puesto que cada variable puede proporcionar a su poseedor diferente adecuación frente a ambientes ligeramente diversos. Es decir, las poblaciones con mucha variabilidad pueden estar como mejor preparadas para posibles, e inciertos, cambios ambientales, pues no sería raro que alguna combinación de sus caracteres resultase adecuada para vivir en nuevos ambientes generados por posibles cambios.
En la naturaleza hay mucha uniformidad morfológica.
La variabilidad génica está encubierta

Todo esto que comento no puede ocurrir en poblaciones con quince individuos. Ni con treinta. La primera desventaja que posee una población que ha reducido su tamaño, es haber perdido variabilidad génica. Por lo dicho antes, si hay menos variabilidad génica, las posibilidades de supervivencia ante posibles cambios ambientales adversos serán menores.
Como dije, la variabilidad génica es una riqueza grande para una población. Es consecuencia de años, y generaciones, produciendo individuos, algunos de los cuales salen airosos de los efectos de la selección natural. Durante todas esas generaciones se han producido mutaciones que están presentes en la población, escondidas bajo el estado de alelos recesivos, pero que en algún momento, y debido a múltiples causas, pueden manifestarse ante la selección natural.

Pero para que aparezcan nuevas formas, que es el paso previo a la subsistencia de la población, ha sido preciso que antes hubiese existido variabilidad génica repartida en un amplio número de individuos componentes de la población.

lunes, 2 de enero de 2017

El olivo, regalo celestial.

Me gustan los mitos. Para mí, son el ejemplo de un intento sagaz de encontrar explicación a todo, a partir de los pocos conocimientos de los que se disponía en la época. Se echó manos de dioses, seres superiores con un poder también superior, para explicar todo cuanto requiriese de explicación. Porqué llueve, porqué hace viento, porqué los ciclos de estaciones y así hasta responder a la mayoría de dudas que se podía plantear la mente humana. Que eran las mismas de hoy, aunque ahora disponemos de mayor cantidad de recursos para responderlas.
Muchos de los mitos nos relatan actuaciones más o menos acertadas por parte de sus protagonistas, y servían a los niños de entonces como pautas educativas. Lo que se posía hacer y lo que no. En otros casos se nos presenta a los dioses con los mismos defectos que los humanos, pero con actuaciones que repercuten en la vida cotidiana. Hubo dioses envidiosos, perezosos, lascivos, etc. Pero el comportamiento de estos dioses tenía trascendencia en la vida cotidiana de los humanos.


ATENEA

Hoy, todas las localidades, sea cual sea su tamaño de población, poseen en el cielo a alguien que vela por el buen vivir de quienes lo habitan. Son los patronos y esto no es de ahora, ya en la Grecia clásica, y antes, existían valedores celestiales de las poblaciones. Eso ocurrió con quienes habitaban un lugar sin nombre, que querían tener patrono e hicieron algo así como un concuerdo celestial.


EL PARTENÓN, TEMPLO EN HONOR A ATENEA

Se presentaron dos candidatos, Un dios, Poseidón, y una diosa, Atenea. Poseidón era un dios extraño, nunca lo he llegado a comprender. Con frecuencia las cosas le salían mal, en otras ocasiones era falso, mentiroso. Ya digo, nunca lo he comprendido por su falta de coherencia. Al menos, si medimos su conducta conforme a nuestras reglas.
Atenea era diferente. Diosa de la sabiduría, era poseedora de las cualidades que le faltaban a Poseidón.


EL REGALO DE ATENEA

Para decidir sobre su patronazgo, los ciudadanos decidieron realizar un concurso entre los dos aspirantes. Para empezar les pidieron un regalo para la ciudad. Poseidón, como sabía de las carencias de agua que sufrían los ciudadanos, clavó su tridente en las rocas y de allí nació una fuente. Hasta ahí, todo bien, pero resultó que manaba agua salada, lo cual no requiere comentario alguno. Los atenienses protestaron, pues dijeron que el agua aquella estropearía sus cosechas, rechazaron el regalo y pidieron a Atenea algo que les resultase de mayor provecho. La diosa les regaló un olivo. En cuanto lo vieron, los ciudadanos comprendieron la grandeza del regalo, la aclamaron como diosa protectora, y pusieron su nombre a la ciudad, que todavía hoy se llama Atenas.


FRUTO DEL OLIVO

Con el tiempo, se erigió un templo en su honor, que sigue siendo el paradigma de la armonía arquitectónica: el Partenón.


UNO DE LOS BENEFICIOS DEL ACEITE


A través del aceite producido por su fruto, el olivo trajo a los atenienses, y a los humanos todos, varios beneficios, plenamente vigentes en la actualidad, como son:

- Es útil en la cocina, en la elaboración de alimentos, tanto crudos como cocidos.

- En beneficioso en medicina, sirviendo en tratamientos externos para aplicar sobre heridas de piel (quemaduras, roces, llagas y similares), así como para ingerir en purgas.
- Es el conservante natural de alimentos.
- Con su fuego se puede iluminar en la noche.
- También es un componente importante en la elaboración de jabones y otros productos higiénicos.
Como se le suponía portador de las virtudes de Atenea, y por extensión de los dioses, también el aceite de oliva fue símbolo , hasta época muy reciente, material del favor divino. De este modo, se utilizó en ceremonias de consagración de personas (reyes o dignidades) o cosas. También en este aspecto, es utilizado para ungir a los enfermos en el sacramento correspondiente. Es estos casos recibe el nombre de Santos Óleos, que son bendecidos en los oficios del Sábado Santo.















viernes, 8 de julio de 2016

Hermano lobo - 2 / Pirámides tróficas

Hay un importante concepto ecológico que nos auxilia en esto de comprender la armonía entre las poblaciones en los hábitats naturales. El concepto se centra allí, donde coexisten seres de diferentes especies coordinadas entre ellas, sin que para definirlas sea preciso recurrir a adjetivos lastimeros propios de otros modos, como la cruel culebra, el zorro astuto, el indefenso cervatillo o milongas de hadas entre nubes, geniecillos de monte o sapitos de la fuente cantarina que, al besarlos, se transforman en príncipes, siempre azules. La vida en la naturaleza es dura, muy dura para quienes habitan en esos territorios, y siempre muy alejada de tintes bucólicos, pero con un premio, dejar descendencia fértil.

Pero, a lo que voy. El concepto importante, como decía, es el de las pirámides tróficas, que nos indica las relaciones de los diferentes grupos de especies desde un punto de vista predador-presa y a través de las cuales se transmite la energía desde que los vegetales la captan del sol y la acumulan en la materia orgánica, a la vez que se va consumiendo.

PIRÁMIDE TRÓFICA

Los grandes grupos de seres vivos pueden clasificarse en autótrofos y heterótrofos. Los primeros son capaces de autoabastecerse de materia orgánica, gracias a la función clorofílica. Son los vegetales. Los heterótrofos, necesariamente han de tomar la materia orgánica en su dieta y según lo que coman los podemos clasificar en herbívoros, carnívoros y carroñeros. En una pirámide trófica, cada uno de estos grupos forma un estrato y se nutre del situado baje él. Además, los vegetales constituyen el único grupo de productores de materia orgánica y captadores de la energía que nos llega a partir del sol. Esta energía acumulada en los vegetales pasa a los restantes grupos conforme los van comiendo. Los carnívoros se nutren de herbívoros, obteniendo de ellos la correspondiente materia orgánica y energía. Cuando mueren los carnívoros, sus cadáveres son aprovechados por los carroñeros, que extraen de ellos la materia orgánica y la energía que aún mantienen de modo residual.

POR ELLAS ENTRA LA ENERGÍA
 EN LOS SERES VIVOS

Siempre ha sido así y sobre estas relaciones se construyen los equilibrios naturales. La verdad es que este esquema es simple, pero en general, el esquema es válido. Muchos vegetales sostienen una buena población de herbívoros, que a su vez sostienen algunos carnívoros. Los tamaños de las poblaciones van disminuyendo, de modo que el reflejo de las poblaciones en una pirámide es adecuado. La cúspide de la pirámide es pequeña (pocos carroñeros) y precisan de una buena base de vegetales. Por eso, en islas de tamaño mediano, no suele haber grandes carroñeros ni grandes carnívoros.

ASÍ PASA LA MATERIA ORGÁNICA DE UNOS GRUPOS A OTROS

Cualquier estrato necesita a los demás, y cualquier fallo en uno de ellos repercute en su conjunto. Cada especie de un ecosistema tiene su especie limitante, estableciéndose entre ellas las relaciones predador-presa, que mantiene equilibradas las cantidades relativas de ambas. Todas se necesitan a todas, todas equilibran a todas. Darwin, en el Origen de las especies, habla de las especies invasoras de un territorio. Dice de ellas que, al estar en hábitat nuevo y sin sus especies limitantes, se transforman en expansivas, peligrosas en esos nuevos hábitats por no tener especies que limiten su número. En nuestro país tenemos sobrados de ejemplos de especies invasoras. Tal vez hable de ellas en otra ocasión.

UN HECHO BIOLÓGICO

Hoy quiero hablar de un carnívoro que casi está en vías de extinción por causa de gente obcecada, que no sabe más que lo que le dictan los intereses inmediatos. Hablo del lobo, claro. En una pirámide trófica tiene un sitio concreto, pues es un carnívoro. Limita, con su actividad, las poblaciones de herbívoros y será alimento de los carroñeros. Su factor limitante lo constituye el tamaño de las poblaciones de herbívoros, ciervos y jabalíes entre otros. Pero en las poblaciones de lobos, el hombre se ha entrometido con fines no biológicos, siempre encaminados a diezmarlas sin ningún otro tipo de consideración. Hoy se matan lobos, sí. Tal vez en algunos territorios se hayan extinguido, no hay datos fehacientes, pero las poblaciones de herbívoros, sin su factor limitante natural, están adquiriendo dimensiones alarmantes. En toda España los jabalíes comienzan a incrementar su número de modo preocupante, lo mismo que los ciervos y otros herbívoros, dependiendo de las zonas. Ahora se pide remedio a esto.

NO HAY CRUELDAD: ES LA VIDA

Tal vez el remedio venga de retomar la situación natural, la de siempre, con salvedades. No se puede dejar desprotegido al ganadero que vive en zona de lobos, más bien es preciso protegerlo e indemnizarle adecuadamente cada vez que sus rebaños sufran ataques, pero hacerlo sin picarescas y con celeridad. No es plan recibir una indemnización por algún animal muerto cuando han pasado muchos meses desde el ataque de los lobos. No creo que sea difícil establecer un protocolo de actuaciones, incluso con calendarios que marquen plazos y generen confianza. Creo que hay perros que constituyen buenos cómplices en la lucha contra el lobo, pero hasta donde yo sé, no conozco ningún programa que subvencione la posesión de tales perros. Hace tiempo, en algunos lugares se depositaba carne con cierta periodicidad para alimento de lobos. Creo saber que esta práctica se ha abandonado. Tampoco conozco la existencia de medidas educativas que informen en los medios rurales de la necesidad del lobo y de sus efectos en las poblaciones naturales.

 EL VÉRTICE DE LA PIRÁMIDE

Podría citar más medidas efectivas para luchar contra lobos o para tratar de mitigar su acción agresiva. Pero curiosamente, nuestras medidas no se han incrementado, como sería de suponer, inspirándose en las actuaciones de otros países a los que les va bien en este tipo de política en medios rurales. Aquí no ha sido así. Aquí se han desechado todos esos programas y se ha preferido volver a matar lobos, tal vez por contentar al sector menos culto de la población y sin tratar de sacarlos de su incultura.

Mientras, seguiremos presenciando cómo se destruyen las poblaciones de lobos y de qué modo su ausencia incide negativamente en lo que queda de nuestros hábitats naturales. Y sí, seguro que siempre habrá quienes estén contentos de esas medidas, posiblemente el electorado de quienes tomaron tales decisiones.


miércoles, 15 de junio de 2016

Radiaciones adaptativas y homologías

A veces, la adquisición de alguna peculiaridad  en seres vivos, permite a sus poseedores invadir hábitats nuevos para ellos. Tal cosa ocurrió cuando algunos ancestrales animales marinos pudieron desarrollar respiración aérea. Se cree que ese paso lo realizaron diversos grupos zoológicos y en distintos momentos de la historia. Al pasar a tierra firme, muchos encontraron un hábitat ocupado por vegetales, con ausencia de predadores y, por tanto, una selección natural muy tenue, si acaso existía selección en aquel momento. Esto propició que apareciesen unas altas tasas de reproducción, incremento de tamaños de población y, en general, aparición de condiciones apropiadas para la diversificación de seres vivos.

Evolutivamente, el resultado de esta fase es lo que conocemos como “radiación adaptativa”, en la que a partir de pocas formas iniciales, aparecen muchas formas descendientes, gracias a la relajación de la actividad por parte de la selección natural, y a la oportunidad de colonizar nuevos hábitats. Son fases en las que, en poco tiempo, hablando en tiempos evolutivos, se genera una gran diversidad a partir de pocas, o muy pocas, formas iniciales.

Extremidades superiores de hombre,
ave y murciélago

Si el hábitat recién colonizado es diverso en ambientes, puede ocurrir que no todos los componentes del grupo sean igualmente aptos para colonizar cada uno de ellos, pudiéndose acomodar los diferentes individuos a aquellos sitios que mejor les convenga. Si ocurre de este modo, comienza a actuar la selección natural, modelando a los nuevos habitantes para que cada vez estén más y más adaptados a sus nuevos hábitats. Esta selección se hace a partir de los órganos que en un inicio compartían todos, y que poco a poco se irán adaptando a sus nuevas utilidades. No obstante, siempre mantendrán una estructura peculiar que recordará a la ancestral, de la que derivan. A estas estructuras nuevas, derivadas de las ancestrales, es a las que conocemos como homologías.
La interpretación actual sobre su origen se basa en suponer que los órganos que consideramos homólogos han aparecido como consecuencia de un proceso evolutivo que, en general, se conoce como “evolución divergente”, que no se refiere a grupos completos, sino a órganos o funciones, que con el fin de adecuarse más y más a los nuevos hábitats, se han ido diferenciando para mejor acomodarse a los tipos de vida requeridos en ellos. En estos casos, la evolución divergente es un proceso muy frecuente y, como consecuencia, se favorece la aparición de formas homólogas entre los grupos taxonómicos próximos que se han ido diferenciando.


En síntesis, llamamos órganos homólogos a aquellos que teniendo similar origen filogenético, desempañan una función diferente en los individuos que los poseen. Tal vez esta definición pueda parecer engorrosa, pero es posible que todo radique en eso del “origen filogenético” y voy a intentar explicarlo.
Debemos saber que, entre otras características, los vertebrados compartimos la de poseer dos pares de extremidades, que por su posición con relación a la cabeza, llamamos anteriores y posteriores, o también, debido a la postura vertical de muchos de sus componentes, conocemos como extremidades superiores e inferiores. Siempre nombrando a partir de la cabeza.
Si tenemos en cuenta esto, veremos que nuestros brazos son nuestras extremidades superiores, lo mismo que las alas lo son en las aves. También el primer par de patas de los cocodrilos son para ellos su primer par de extremidades anteriores, así como en ranas o sapos. Culebras, peces y otros vertebrados las tienen atrofiadas, pero todos estos órganos que comento tienen el mismo significado estructural. Dentro de su morfología, son el primer par de extremidades, sean anteriores o superiores, propias de los vertebrados. No hay duda de que cada grupo de ellos utiliza estas extremidades para mejor adecuarse a su modo de vida. Las aves suelen volar gracias a ellas, los peces, nadar, nosotros y primates, para manipular y así podríamos seguir indicando diferentes grupos de animales y sus, también peculiares, usos que les damos cada uno.
ESQUELETOS DE EXTREMIDADES ANTERIORES
DE MAMIFEROS. lOS COLORES INDICAN LOS HUESOS HOMÓLOGOS

En cuanto a la morfología, a nadie se le ocurre buscar parecido entre nuestros brazos y las alas de un ave o el primer par de patas de una rana. Pero si diseccionamos esas extremidades y observamos atentamente sus respectivos esqueletos, vemos que todos ellos están estructurados de la misma manera. Un hueso largo, llamado húmero, que mediante una articulación (que en nuestro caso llamamos codo), une y articula a dos huesos, el cúbito y el radio y que, en nuestro caso, pueden girar uno sobre el otro confiriéndole a la mano esa misma capacidad giratoria.
Desde el punto de vista embrionario, así como del estructural, esos órganos son semejantes, aunque debido a procesos evolutivos divergentes, hoy tengan morfología y uso diferente. Por eso decimos de ellos que son homólogos.
Para muchos, radiación adaptativa y evolución divergente (como origen de homologías) es la misma cosa, el mismo proceso con diferentes nombres. Yo creo que uno es consecuencia del otro, pero es una opinión personal. La radiación adaptativa se produce cuando un grupo biológico invade un nuevo hábitat y lo coloniza sin efecto adverso sobre él por parte de la selección natural. El tamaño de población se incrementa de modo notable y si el hábitat es homogéneo, no hay mayores efectos derivados, si bien para que exista “radiación adaptativa” es preciso que se produzca la aparición de numerosos grupos taxonómicos derivados de los pocos iniciales. Si no aparecen grupos taxonómicos nuevos, todo se resume en un gran incremento poblacional. La evolución divergente se produce cuando el hábitat no es homogéneo, existe selección para ocupar diferentes sectores de ese hábitat y esa misma selección va modificando los órganos iniciales a los hábitats que se van colonizando, de modo que sean más eficaces. Decimos de estos órganos que se adecuan a los diferentes hábitats, que sufren evolución divergente.
Tenemos múltiples ejemplos de homologías en vegetales. Tantos, que mejor dedico a ellas la próxima entrada.


martes, 31 de mayo de 2016

La adaptación como estructura

Entre los seres vivos, una adaptación es cualquier tipo de estructura hereditaria que hace que sus poseedores, en comparación con los que carecen de ella, tengan más hijos. Cuando hablo de estructura, no sólo me refiero a morfologías especiales, también a cadenas bioquímicas de síntesis o de degradación. Tras una coloración, que suele ser adaptativa, hay una reacción bioquímica.



PICOS ADECUADOS PERMITEN
COMER DETERMINADAS PRESAS

La condición de ser hereditaria está muy relacionado con el concepto de adaptación que vengo comentando en estos últimos artículos. Existen genes responsables de ella y, al conferir mayor éxito biológico a sus poseedores, esos genes pasarán a la generación siguiente con mayor frecuencia que los responsables de la ausencia del carácter. En este sentido, éxito biológico se entiende como capacidad (comparativa) de tener mayor número de hijos fértiles o, dicho de otro modo, capacidad de dejar más copias de los propios genes en las generaciones siguientes.

lAS PLANTAS CON ESPINAS SE DEFIENDEN
DE PREDADORES

Si hablamos de una población limitada por sus recursos a 1000 individuos, este tamaño fluctuará poco a lo largo de las generaciones. Si en la generación siguiente hay algunos más, será debido a que unos progenitores tuvieron más hijos y, por tanto, dejaron más copias de sus genes que los individuos que tuvieron menos hijos. Puede ocurrir que en la generación siguiente haya menos de mil, será porque algunos se han reproducido menos, pero ¿qué ha ocurrido ahora con aquellos que antes lo habían hecho con mayor éxito? Tal vez siga ocurriendo de ese modo en términos de descendencias individuales. Ese mayor número de hijos puede ser debido a algo, que además es hereditario. En caso de ser así, los genes responsables de la estructura que contribuye al incremento de hijos irán aumentando de frecuencia en la población. Esas estructuras, tal como lo estoy comentando, están favorecidas por la selección natural y por tanto, y de acuerdo con Darwin, son adaptaciones.

¿Podemos conocerlas? Algunas sí, pues es sencillo deducir su contribución al éxito reproductivo de sus portadores. Por ejemplo, las que incrementan su viabilidad, sus mecanismos de defensa en fases juveniles, las que los defienden mediante diversas estructuras y mecanismos. Y un sinfín más de ellas. En otros casos no es tan sencillo reconocerlas y, en la mayoría de los casos, nos resultan completamente desconocidas.

ESTA RAYA QUEDA CAMUFLADA
GRACIAS A SU COLORACIÓN

¿Qué “ve” la Selección Natural cuando actúa?? Es decir, ¿cuál es la unidad sobre la que actúa? Parece no haber duda de que es el individuo, aunque hay veces en que parece que sea la población la seleccionada, pero en este caso, mediante una actuación sobre los individuos que forman parte de ella. Hay situaciones en las que está claro que la Selección Natural actúa sobre genes concretos (En casos de letalidad, el individuo muere debido a la presencia de un solo gen).

En cada generación, la Selección Natural actúa favoreciendo a los reproductores que darán lugar a la generación siguiente, no tiene visión ni tendencia a largo plazo. No obstante, podemos ver tendencias evolutivas en el registro fósil. ¿Es esto un contrasentido? Para nada. Los ambientes cambian muy lentamente. En estos casos, la selección puede ir favoreciendo los mismos rasgos en cada generación, de modo que el carácter seleccionado podrá irse acentuando. Puede parecer que existió una tendencia evolutiva cuando, en realidad, lo que hubo fue una constante acción selectiva ciega en una misma dirección a lo largo del tiempo.

Resumiento, consideramos adaptaciones a aquellos caracteres hereditarios que confieren a sus poseedores la capacidad de tener más hijos fértiles en relación con los que tienen los individuos carentes de tales caracteres. En este sentido, la adaptación se define como un concepto comparativo y estadístico.


martes, 12 de abril de 2016

Reflexiones sobre el azar

+Laura Villoria me comenta que, al hablar de poblaciones pequeñas, me acerco más a ideas de M. Kimura que a las de Darwin. No le falta razón, pero ha tenido que hacerme reflexionar sobre eso. Llevo tantos años dándole la vuelta a las mismas cosas, que ya no soy capaz de reconocer su paternidad.

Kimura no es muy conocido para el gran público. Sólo Darwin, por el brutal comentario, falsamente atribuido a él, acerca de la supervivencia del más fuerte, permanece en el sentir popular propiciado por gente matona, inculta y satisfecha de sí. (Me gustaría saber cuántos españoles conocen el trabajo de Cajal, el que le hizo merecer el Premio Nobel).

VARIABILIDAD GENÉTICA ENZIMATICA.
CADA VERTICAL REPRESENTA
UN INDIVIDUO MUESTREADO


En la década de 1960, en genética, las ideas parecían estar consolidadas. Fue entonces cuando apareció una nueva técnica de análisis enzimático, electroforesis en gel, y dos investigadores, Hubby y Lewontin, la aplicaron a muestras de individuos procedentes de  muy diversas poblaciones naturales. Los resultados fueron espectaculares por lo inesperados. Había mucha variabilidad genética no visible en las poblaciones, mucha más de la explicable con los criterios de entonces.
Lo he dicho en otras entradas de este blog. La ciencia busca explicar el entorno con las herramientas de que dispone. Con estas explicaciones se construye un cuerpo doctrinal, nunca cerrado, con el que se pretende interpretar y responder a las preguntas que se vayan formulando. Para comprobar la veracidad de las hipótesis utilizadas, se vuelven a comprobar cuando se dispone de nuevos métodos de análisis.
Para comprobar las ideas genéticas imperantes, en 1966, se aplicaron las técnicas de la electroforesis a las poblaciones naturales. Las ideas anteriores sufrieron un tremendo revulsivo, a la vez que aparecieron nuevas preguntas por contestar, muchas de ellas aún en vías de resolución.

VEMOS UN GRAN VARIABILIDAD ENTRE LOS
INDIVIDUOS MUESTREADOS

Como apareció mucha variabilidad génica, es decir más de la esperada,  las preguntas giran alrededor de este dato. ¿Cómo surge esta variabilidad? Y más importante aún, ¿cómo se mantiene? Cómo aparece la variabilidad está claro que es por mutación, pero lo esperado sería que se perdiese al poco de aparecer. No obstante, hay mucha en las poblaciones naturales. ¿Cómo se mantiene? Es decir, cómo es que la selección natural no va eliminando, a la velocidad que sea, toda la variabilidad que no genere mayor adaptación a sus portadores.
Porque, y hay que tenerlo en cuenta, mucha variabilidad requiere poblaciones grandes, pero en la naturaleza las poblaciones no lo son. Más bien, tienen tamaños limitados. En una bandada de aves, en un pequeño bosque o en una colonia de celentéreos, es donde se llevan a cabo los procesos evolutivos que he comentado en mas de una ocasión. Y no tienen grandes tamaños. Para comprender lo que ocurría, se estudiaron diversos procesos biológicos y aparecieron casos de selección explicables mediante las teorías de Darwin, pero aplicados a casos concretos, como la selección estacional, la dependiente de frecuencias, la gamética, etc. etc.
Aquí había un fallo conceptual, grande. Nadie quería abandonar la idea de la selección darwiniana, el pensar que cada gen, a su modo, contribuye al valor selectivo de su portador. ¿Sumando o multiplicando? Es imposible que todos los genes actúen por igual, pues los letales, por ejemplo, tendrían un efecto enmascarador de los demás, matando a su portador.



Es en esta situación de la contribución de los diferentes genes al valor de un individuo frente a la selección, cuando Kimura propone que, al igual que la contribución de los genes a ese valor es variable, tambien los puede haber con valor 0, es decir, que sean neutros ante la selección. Así, unos serán beneficiados, otros rechazados y otros, la mayoría, serán neutros ante la selección. Esto explicaría la gran cantidad de variabilidad encontrada, y cuya explicación resultaba muy difícil desde un punto de vista adaptativo. Simplemente, porque al ser neutros, la selección no los “ve”.
Me gustan mucho estas ideas, pues a veces vamos más allá de lo que nos dicen nuestros estudios. Por ejemplo, a veces queremos saber qué ve la selección natural, y no nos damos cuenta de que es una tendencia sin mayor trascendencia a corto plazo. Que depende mucho de las condiciones ambientales y que de ese modo, sus individuos seleccionados pueden ser muy diferentes a lo largo de las generaciones. A veces he oído decir “lo que tendría que ocurrir…” y me he reído, porque parece que haya quienes quieran darle la vuelta a las cosas. Nosotros estudiamos la naturaleza, no tenemos que indicarle lo que debe hacer.
Una cosas derivada de todo esto es que (pensábamos) los gametos formadores de una generación, lo eran gracias a haber sido favorecidos por diversos aspectos de la selección. ¿Y si eran neutros, si la selección no los veía? Entonces entraba en escena el azar.
No todos los genes son selectivos ni todos son neutros. Desconozco cómo se integra el valor de cada gen en el valor general del gameto, pero algo de esto hay.
Antes de Kimura, las poblaciones genéticas se definían como “conjunto infinito de individuos…” Luego, con los pies más en el suelo, tal vez comprendiendo que no existe una población de tamaño infinito, se define como “conjunto de individuos que se cruzan entre si…” Ese es el objeto de la evolución, la población que de mayor o menor tamaño, siempre en pequeña en términos genéticos, y sujeta a diversos efectos selectivos, Pero también al azar.



Un error conceptual evidente (las poblaciones son infinitas…) que no supimos ver hasta pasado mucho tiempo. Con frecuencia me pregunto con cuántos errores conceptuales de este tipo estaremos trabajando. El aceptar la idea de Kimura, suponía para muchos una especie de rechazo a Darwin, por eso tardó tanto en serlo. En aquel tiempo yo hacía mi tesis doctoral. Desde entonces, he visto que a las personas mayores les cuesta adoptar ideas nuevas, tal vez pensando traicionar a antiguos maestros. No lo sé. Creo que no participo de ese modo de pensar.

Gracias  +Laura Villoria, por hacerme reflexionar sobre esto.

jueves, 7 de abril de 2016

El azar en poblaciones pequeñas

Me meto en terreno vidrioso al hablar del tamaño de las poblaciones. Tal vez sean pocos quienes hayan reflexionado sobre este tema. Es posible, incluso, que haya quienes piensen que dichos tamaños pueden ser ilimitados. ¿Es así?


En anteriores ocasiones he dicho que los tamaños de las poblaciones se suelen mantener constantes a lo largo del tiempo en que podemos estudiarlas. Cuidado, aquí he incluido varias incertidumbres. Digo “se suelen mantener”, y es cierto. Esos tamaños fluctúan alrededor de un valor medio, estadístico, que se obtiene después de sucesivas mediciones. Pero a nadie sorprende que aparezcan valores desviados por una u otra causa. Hablamos de medias, no de magnitudes absolutas. También he dicho “en que podemos estudiarlas”, y es que hace muy poco tiempo que se vienen tomando datos relativos a estas poblaciones. De lo que ocurrió antes, no tenemos muchas ideas, si acaso indirectas.


Tamaño de población. Concepto nuevo, tal vez, para muchos. Una realidad biológica con factores condicionados por causas diversas. Ningún terreno es capaz de soportar una población de tamaño ilimitado. Por ejemplo, los animales precisan comer y en ese supuesto territorio han de encontrar los aportes nutritivos que precisan. Esto mismo es válido para organismos acuáticos. Los vegetales también están sometidos al mismo tipo de relación con otros vegetales, mediante una especie de alergias llamadas alelopatías, y que impiden el crecimiento de otros vegetales similares a los ya presentes en el territorio. Es decir, en cierto modo, limitan el tamaño de la población de la que forman parte.

Por otra parte, si los recursos limitan las expansiones ciegas de las poblaciones, hay que tener en cuenta que esas mismas colectividades forman parte de los recursos alimenticios de otras especies presentes en el mismo lugar. Es decir, una población necesita comer, y la disponibilidad de alimentos puede limitar su tamaño, pero esa misma población puede entrar dentro de la dieta de otra especie, que también la limita como predador suyo.


Con estas presiones por ambos lados, resulta que, a la larga, los tamaños de población son valores en equilibrio inestable, siempre alrededor de unos parámetros más o menos constantes. Ahí tenemos a la población con un tamaño que fluctúa alrededor de una media. Biológicamente, es lógico, la población de una generación dada es hija de la población de la generación anterior y, a su vez, generará la población siguiente. Es lo de siempre. Si está formada por un número determinado de individuos (N), se habrá generado a partir del mismo número de gametos masculinos (N) que femeninos (N). Si el tamaño se mantiene estable, la tasa de renovación de individuos es igual a uno. Es decir, si el sitio está saturado, sólo llegará al estado adulto un número similar al de los que mueran. Al morir dejan disponible un lugar que pronto es ocupado. No hay sitio para más y la selección es así de intensa.


Con vegetales ocurre otro tanto. Al pasear por el monte podemos ver muchos pinos o carballos minúsculos. Sólo llegarán a adultos aquellos que puedan ocupar el sitio libre dejado por un antecesor que haya muerto. A no ser que la población se expanda por los bordes, las formas juveniles centrales de la población tienen pocas expectativas de alcanzar el estado adulto.

En todo caso, los tamaños pequeños de población nos hablan de números bajos de individuos formados por pocos gametos. A la larga, los gametos eficaces, los que originan individuos que serán reproductores, si son pocos en número, pueden no ser representativos de la constitución génica de la población que los ha formado. Es simplemente cuestión de azar sin que sea necesario explicarlo por procesos de selección natural. A esta situación en la que la constitución genética de una población va variando por cuestiones aleatorias debidas a bajos tamaños de población, le llamamos deriva genética.

Esta puede ser la explicación de la diferencia genética que podemos encontrar entre individuos pertenecientes a poblaciones pequeñas aisladas entre ellas por causas de diversa índole, como pueden ser geográficas, ecológicas, tróficas, etc.

Las fotos de vegetales son de Sergio Roma

Ver perfil de Sergio Roma